summaryrefslogtreecommitdiff
path: root/vere/ext/nasm/asm/assemble.c
diff options
context:
space:
mode:
authorpolwex <polwex@sortug.com>2025-10-05 21:56:51 +0700
committerpolwex <polwex@sortug.com>2025-10-05 21:56:51 +0700
commitfcedfddf00b3f994e4f4e40332ac7fc192c63244 (patch)
tree51d38e62c7bdfcc5f9a5e9435fe820c93cfc9a3d /vere/ext/nasm/asm/assemble.c
claude is gud
Diffstat (limited to 'vere/ext/nasm/asm/assemble.c')
-rw-r--r--vere/ext/nasm/asm/assemble.c3411
1 files changed, 3411 insertions, 0 deletions
diff --git a/vere/ext/nasm/asm/assemble.c b/vere/ext/nasm/asm/assemble.c
new file mode 100644
index 0000000..7eab5ce
--- /dev/null
+++ b/vere/ext/nasm/asm/assemble.c
@@ -0,0 +1,3411 @@
+/* ----------------------------------------------------------------------- *
+ *
+ * Copyright 1996-2022 The NASM Authors - All Rights Reserved
+ * See the file AUTHORS included with the NASM distribution for
+ * the specific copyright holders.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following
+ * conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer in the documentation and/or other materials provided
+ * with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
+ * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
+ * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
+ * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * ----------------------------------------------------------------------- */
+
+/*
+ * assemble.c code generation for the Netwide Assembler
+ *
+ * Bytecode specification
+ * ----------------------
+ *
+ *
+ * Codes Mnemonic Explanation
+ *
+ * \0 terminates the code. (Unless it's a literal of course.)
+ * \1..\4 that many literal bytes follow in the code stream
+ * \5 add 4 to the primary operand number (b, low octdigit)
+ * \6 add 4 to the secondary operand number (a, middle octdigit)
+ * \7 add 4 to both the primary and the secondary operand number
+ * \10..\13 a literal byte follows in the code stream, to be added
+ * to the register value of operand 0..3
+ * \14..\17 the position of index register operand in MIB (BND insns)
+ * \20..\23 ib a byte immediate operand, from operand 0..3
+ * \24..\27 ib,u a zero-extended byte immediate operand, from operand 0..3
+ * \30..\33 iw a word immediate operand, from operand 0..3
+ * \34..\37 iwd select between \3[0-3] and \4[0-3] depending on 16/32 bit
+ * assembly mode or the operand-size override on the operand
+ * \40..\43 id a long immediate operand, from operand 0..3
+ * \44..\47 iwdq select between \3[0-3], \4[0-3] and \5[4-7]
+ * depending on the address size of the instruction.
+ * \50..\53 rel8 a byte relative operand, from operand 0..3
+ * \54..\57 iq a qword immediate operand, from operand 0..3
+ * \60..\63 rel16 a word relative operand, from operand 0..3
+ * \64..\67 rel select between \6[0-3] and \7[0-3] depending on 16/32 bit
+ * assembly mode or the operand-size override on the operand
+ * \70..\73 rel32 a long relative operand, from operand 0..3
+ * \74..\77 seg a word constant, from the _segment_ part of operand 0..3
+ * \1ab /r a ModRM, calculated on EA in operand a, with the reg
+ * field the register value of operand b.
+ * \171\mab /mrb (e.g /3r0) a ModRM, with the reg field taken from operand a, and the m
+ * and b fields set to the specified values.
+ * \172\ab /is4 the register number from operand a in bits 7..4, with
+ * the 4-bit immediate from operand b in bits 3..0.
+ * \173\xab the register number from operand a in bits 7..4, with
+ * the value b in bits 3..0.
+ * \174..\177 the register number from operand 0..3 in bits 7..4, and
+ * an arbitrary value in bits 3..0 (assembled as zero.)
+ * \2ab /b a ModRM, calculated on EA in operand a, with the reg
+ * field equal to digit b.
+ * \240..\243 this instruction uses EVEX rather than REX or VEX/XOP, with the
+ * V field taken from operand 0..3.
+ * \250 this instruction uses EVEX rather than REX or VEX/XOP, with the
+ * V field set to 1111b.
+ *
+ * EVEX prefixes are followed by the sequence:
+ * \cm\wlp\tup where cm is:
+ * cc 00m mmm
+ * c = 2 for EVEX and mmmm is the M field (EVEX.P0[3:0])
+ * and wlp is:
+ * 00 wwl lpp
+ * [l0] ll = 0 (.128, .lz)
+ * [l1] ll = 1 (.256)
+ * [l2] ll = 2 (.512)
+ * [lig] ll = 3 for EVEX.L'L don't care (always assembled as 0)
+ *
+ * [w0] ww = 0 for W = 0
+ * [w1] ww = 1 for W = 1
+ * [wig] ww = 2 for W don't care (always assembled as 0)
+ * [ww] ww = 3 for W used as REX.W
+ *
+ * [p0] pp = 0 for no prefix
+ * [60] pp = 1 for legacy prefix 60
+ * [f3] pp = 2
+ * [f2] pp = 3
+ *
+ * tup is tuple type for Disp8*N from %tuple_codes in insns.pl
+ * (compressed displacement encoding)
+ *
+ * \254..\257 id,s a signed 32-bit operand to be extended to 64 bits.
+ * \260..\263 this instruction uses VEX/XOP rather than REX, with the
+ * V field taken from operand 0..3.
+ * \270 this instruction uses VEX/XOP rather than REX, with the
+ * V field set to 1111b.
+ * VEX/XOP prefixes are followed by the sequence:
+ * \tmm\wlp where mm is the M field; and wlp is:
+ * 00 wwl lpp
+ * [l0] ll = 0 for L = 0 (.128, .lz)
+ * [l1] ll = 1 for L = 1 (.256)
+ * [lig] ll = 2 for L don't care (always assembled as 0)
+ *
+ * [w0] ww = 0 for W = 0
+ * [w1 ] ww = 1 for W = 1
+ * [wig] ww = 2 for W don't care (always assembled as 0)
+ * [ww] ww = 3 for W used as REX.W
+ *
+ * t = 0 for VEX (C4/C5), t = 1 for XOP (8F).
+ *
+ * \271 hlexr instruction takes XRELEASE (F3) with or without lock
+ * \272 hlenl instruction takes XACQUIRE/XRELEASE with or without lock
+ * \273 hle instruction takes XACQUIRE/XRELEASE with lock only
+ * \274..\277 ib,s a byte immediate operand, from operand 0..3, sign-extended
+ * to the operand size (if o16/o32/o64 present) or the bit size
+ * \310 a16 indicates fixed 16-bit address size, i.e. optional 0x67.
+ * \311 a32 indicates fixed 32-bit address size, i.e. optional 0x67.
+ * \312 adf (disassembler only) invalid with non-default address size.
+ * \313 a64 indicates fixed 64-bit address size, 0x67 invalid.
+ * \314 norexb (disassembler only) invalid with REX.B
+ * \315 norexx (disassembler only) invalid with REX.X
+ * \316 norexr (disassembler only) invalid with REX.R
+ * \317 norexw (disassembler only) invalid with REX.W
+ * \320 o16 indicates fixed 16-bit operand size, i.e. optional 0x66.
+ * \321 o32 indicates fixed 32-bit operand size, i.e. optional 0x66.
+ * \322 odf indicates that this instruction is only valid when the
+ * operand size is the default (instruction to disassembler,
+ * generates no code in the assembler)
+ * \323 o64nw indicates fixed 64-bit operand size, REX on extensions only.
+ * \324 o64 indicates 64-bit operand size requiring REX prefix.
+ * \325 nohi instruction which always uses spl/bpl/sil/dil
+ * \326 nof3 instruction not valid with 0xF3 REP prefix. Hint for
+ disassembler only; for SSE instructions.
+ * \331 norep instruction not valid with REP prefix. Hint for
+ * disassembler only; for SSE instructions.
+ * \332 f2i REP prefix (0xF2 byte) used as opcode extension.
+ * \333 f3i REP prefix (0xF3 byte) used as opcode extension.
+ * \334 rex.l LOCK prefix used as REX.R (used in non-64-bit mode)
+ * \335 repe disassemble a rep (0xF3 byte) prefix as repe not rep.
+ * \336 mustrep force a REP(E) prefix (0xF3) even if not specified.
+ * \337 mustrepne force a REPNE prefix (0xF2) even if not specified.
+ * \336-\337 are still listed as prefixes in the disassembler.
+ * \340 resb reserve <operand 0> bytes of uninitialized storage.
+ * Operand 0 had better be a segmentless constant.
+ * \341 wait this instruction needs a WAIT "prefix"
+ * \360 np no SSE prefix (== \364\331)
+ * \361 66 SSE prefix (== \366\331)
+ * \364 !osp operand-size prefix (0x66) not permitted
+ * \365 !asp address-size prefix (0x67) not permitted
+ * \366 operand-size prefix (0x66) used as opcode extension
+ * \367 address-size prefix (0x67) used as opcode extension
+ * \370,\371 jcc8 match only if operand 0 meets byte jump criteria.
+ * jmp8 370 is used for Jcc, 371 is used for JMP.
+ * \373 jlen assemble 0x03 if bits==16, 0x05 if bits==32;
+ * used for conditional jump over longer jump
+ * \374 vsibx|vm32x|vm64x this instruction takes an XMM VSIB memory EA
+ * \375 vsiby|vm32y|vm64y this instruction takes an YMM VSIB memory EA
+ * \376 vsibz|vm32z|vm64z this instruction takes an ZMM VSIB memory EA
+ */
+
+#include "compiler.h"
+
+
+#include "nasm.h"
+#include "nasmlib.h"
+#include "error.h"
+#include "assemble.h"
+#include "insns.h"
+#include "tables.h"
+#include "disp8.h"
+#include "listing.h"
+#include "dbginfo.h"
+
+enum match_result {
+ /*
+ * Matching errors. These should be sorted so that more specific
+ * errors come later in the sequence.
+ */
+ MERR_INVALOP,
+ MERR_OPSIZEMISSING,
+ MERR_OPSIZEMISMATCH,
+ MERR_BRNOTHERE,
+ MERR_BRNUMMISMATCH,
+ MERR_MASKNOTHERE,
+ MERR_DECONOTHERE,
+ MERR_BADCPU,
+ MERR_BADMODE,
+ MERR_BADHLE,
+ MERR_ENCMISMATCH,
+ MERR_BADBND,
+ MERR_BADREPNE,
+ MERR_REGSETSIZE,
+ MERR_REGSET,
+ /*
+ * Matching success; the conditional ones first
+ */
+ MOK_JUMP, /* Matching OK but needs jmp_match() */
+ MOK_GOOD /* Matching unconditionally OK */
+};
+
+typedef struct {
+ enum ea_type type; /* what kind of EA is this? */
+ int sib_present; /* is a SIB byte necessary? */
+ int bytes; /* # of bytes of offset needed */
+ int size; /* lazy - this is sib+bytes+1 */
+ uint8_t modrm, sib, rex, rip; /* the bytes themselves */
+ int8_t disp8; /* compressed displacement for EVEX */
+} ea;
+
+#define GEN_SIB(scale, index, base) \
+ (((scale) << 6) | ((index) << 3) | ((base)))
+
+#define GEN_MODRM(mod, reg, rm) \
+ (((mod) << 6) | (((reg) & 7) << 3) | ((rm) & 7))
+
+static int64_t calcsize(int32_t, int64_t, int, insn *,
+ const struct itemplate *);
+static int emit_prefix(struct out_data *data, const int bits, insn *ins);
+static void gencode(struct out_data *data, insn *ins);
+static enum match_result find_match(const struct itemplate **tempp,
+ insn *instruction,
+ int32_t segment, int64_t offset, int bits);
+static enum match_result matches(const struct itemplate *, insn *, int bits);
+static opflags_t regflag(const operand *);
+static int32_t regval(const operand *);
+static int rexflags(int, opflags_t, int);
+static int op_rexflags(const operand *, int);
+static int op_evexflags(const operand *, int, uint8_t);
+static void add_asp(insn *, int);
+
+static int process_ea(operand *, ea *, int, int, opflags_t,
+ insn *, enum ea_type, const char **);
+
+static inline bool absolute_op(const struct operand *o)
+{
+ return o->segment == NO_SEG && o->wrt == NO_SEG &&
+ !(o->opflags & OPFLAG_RELATIVE);
+}
+
+static int has_prefix(insn * ins, enum prefix_pos pos, int prefix)
+{
+ return ins->prefixes[pos] == prefix;
+}
+
+static void assert_no_prefix(insn * ins, enum prefix_pos pos)
+{
+ if (ins->prefixes[pos])
+ nasm_nonfatal("invalid %s prefix", prefix_name(ins->prefixes[pos]));
+}
+
+static const char *size_name(int size)
+{
+ switch (size) {
+ case 1:
+ return "byte";
+ case 2:
+ return "word";
+ case 4:
+ return "dword";
+ case 8:
+ return "qword";
+ case 10:
+ return "tword";
+ case 16:
+ return "oword";
+ case 32:
+ return "yword";
+ case 64:
+ return "zword";
+ default:
+ return "???";
+ }
+}
+
+static void warn_overflow(int size)
+{
+ nasm_warn(ERR_PASS2 | WARN_NUMBER_OVERFLOW, "%s data exceeds bounds",
+ size_name(size));
+}
+
+static void warn_overflow_const(int64_t data, int size)
+{
+ if (overflow_general(data, size))
+ warn_overflow(size);
+}
+
+static void warn_overflow_out(int64_t data, int size, enum out_flags flags)
+{
+ bool err;
+
+ if (flags & OUT_SIGNED)
+ err = overflow_signed(data, size);
+ else if (flags & OUT_UNSIGNED)
+ err = overflow_unsigned(data, size);
+ else
+ err = overflow_general(data, size);
+
+ if (err)
+ warn_overflow(size);
+}
+
+/*
+ * Collect macro-related debug information, if applicable.
+ */
+static void debug_macro_out(const struct out_data *data)
+{
+ struct debug_macro_addr *addr;
+ uint64_t start = data->offset;
+ uint64_t end = start + data->size;
+
+ addr = debug_macro_get_addr(data->segment);
+ while (addr) {
+ if (!addr->len)
+ addr->start = start;
+ addr->len = end - addr->start;
+ addr = addr->up;
+ }
+}
+
+/*
+ * This routine wrappers the real output format's output routine,
+ * in order to pass a copy of the data off to the listing file
+ * generator at the same time, flatten unnecessary relocations,
+ * and verify backend compatibility.
+ */
+/*
+ * This warning is currently issued by backends, but in the future
+ * this code should be centralized.
+ *
+ *!zeroing [on] RESx in initialized section becomes zero
+ *! a \c{RESx} directive was used in a section which contains
+ *! initialized data, and the output format does not support
+ *! this. Instead, this will be replaced with explicit zero
+ *! content, which may produce a large output file.
+ */
+static void out(struct out_data *data)
+{
+ static struct last_debug_info {
+ struct src_location where;
+ int32_t segment;
+ } dbg;
+ union {
+ uint8_t b[8];
+ uint64_t q;
+ } xdata;
+ size_t asize, amax;
+ uint64_t zeropad = 0;
+ int64_t addrval;
+ int32_t fixseg; /* Segment for which to produce fixed data */
+
+ if (!data->size)
+ return; /* Nothing to do */
+
+ /*
+ * Convert addresses to RAWDATA if possible
+ * XXX: not all backends want this for global symbols!!!!
+ */
+ switch (data->type) {
+ case OUT_ADDRESS:
+ addrval = data->toffset;
+ fixseg = NO_SEG; /* Absolute address is fixed data */
+ goto address;
+
+ case OUT_RELADDR:
+ addrval = data->toffset - data->relbase;
+ fixseg = data->segment; /* Our own segment is fixed data */
+ goto address;
+
+ address:
+ nasm_assert(data->size <= 8);
+ asize = data->size;
+ amax = ofmt->maxbits >> 3; /* Maximum address size in bytes */
+ if (!(ofmt->flags & OFMT_KEEP_ADDR) &&
+ data->tsegment == fixseg &&
+ data->twrt == NO_SEG) {
+ if (asize >= (size_t)(data->bits >> 3)) {
+ /* Support address space wrapping for low-bit modes */
+ data->flags &= ~OUT_SIGNMASK;
+ }
+ warn_overflow_out(addrval, asize, data->flags);
+ xdata.q = cpu_to_le64(addrval);
+ data->data = xdata.b;
+ data->type = OUT_RAWDATA;
+ asize = amax = 0; /* No longer an address */
+ }
+ break;
+
+ case OUT_SEGMENT:
+ nasm_assert(data->size <= 8);
+ asize = data->size;
+ amax = 2;
+ break;
+
+ default:
+ asize = amax = 0; /* Not an address */
+ break;
+ }
+
+ /*
+ * If the source location or output segment has changed,
+ * let the debug backend know. Some backends really don't
+ * like being given a NULL filename as can happen if we
+ * use -Lb and expand a macro, so filter out that case.
+ */
+ data->where = src_where();
+ if (data->where.filename &&
+ (!src_location_same(data->where, dbg.where) |
+ (data->segment != dbg.segment))) {
+ dbg.where = data->where;
+ dbg.segment = data->segment;
+ dfmt->linenum(dbg.where.filename, dbg.where.lineno, data->segment);
+ }
+
+ if (asize > amax) {
+ if (data->type == OUT_RELADDR || (data->flags & OUT_SIGNED)) {
+ nasm_nonfatal("%u-bit signed relocation unsupported by output format %s",
+ (unsigned int)(asize << 3), ofmt->shortname);
+ } else {
+ /*!
+ *!zext-reloc [on] relocation zero-extended to match output format
+ *! warns that a relocation has been zero-extended due
+ *! to limitations in the output format.
+ */
+ nasm_warn(WARN_ZEXT_RELOC,
+ "%u-bit %s relocation zero-extended from %u bits",
+ (unsigned int)(asize << 3),
+ data->type == OUT_SEGMENT ? "segment" : "unsigned",
+ (unsigned int)(amax << 3));
+ }
+ zeropad = data->size - amax;
+ data->size = amax;
+ }
+ lfmt->output(data);
+
+ if (likely(data->segment != NO_SEG)) {
+ /*
+ * Collect macro-related information for the debugger, if applicable
+ */
+ if (debug_current_macro)
+ debug_macro_out(data);
+
+ ofmt->output(data);
+ } else {
+ /* Outputting to ABSOLUTE section - only reserve is permitted */
+ if (data->type != OUT_RESERVE)
+ nasm_nonfatal("attempt to assemble code in [ABSOLUTE] space");
+ /* No need to push to the backend */
+ }
+
+ data->offset += data->size;
+ data->insoffs += data->size;
+
+ if (zeropad) {
+ data->type = OUT_ZERODATA;
+ data->size = zeropad;
+ lfmt->output(data);
+ ofmt->output(data);
+ data->offset += zeropad;
+ data->insoffs += zeropad;
+ data->size += zeropad; /* Restore original size value */
+ }
+}
+
+static inline void out_rawdata(struct out_data *data, const void *rawdata,
+ size_t size)
+{
+ data->type = OUT_RAWDATA;
+ data->data = rawdata;
+ data->size = size;
+ out(data);
+}
+
+static void out_rawbyte(struct out_data *data, uint8_t byte)
+{
+ data->type = OUT_RAWDATA;
+ data->data = &byte;
+ data->size = 1;
+ out(data);
+}
+
+static inline void out_reserve(struct out_data *data, uint64_t size)
+{
+ data->type = OUT_RESERVE;
+ data->size = size;
+ out(data);
+}
+
+static void out_segment(struct out_data *data, const struct operand *opx)
+{
+ if (opx->opflags & OPFLAG_RELATIVE)
+ nasm_nonfatal("segment references cannot be relative");
+
+ data->type = OUT_SEGMENT;
+ data->flags = OUT_UNSIGNED;
+ data->size = 2;
+ data->toffset = opx->offset;
+ data->tsegment = ofmt->segbase(opx->segment | 1);
+ data->twrt = opx->wrt;
+ out(data);
+}
+
+static void out_imm(struct out_data *data, const struct operand *opx,
+ int size, enum out_flags sign)
+{
+ if (opx->segment != NO_SEG && (opx->segment & 1)) {
+ /*
+ * This is actually a segment reference, but eval() has
+ * already called ofmt->segbase() for us. Sigh.
+ */
+ if (size < 2)
+ nasm_nonfatal("segment reference must be 16 bits");
+
+ data->type = OUT_SEGMENT;
+ } else {
+ data->type = (opx->opflags & OPFLAG_RELATIVE)
+ ? OUT_RELADDR : OUT_ADDRESS;
+ }
+ data->flags = sign;
+ data->toffset = opx->offset;
+ data->tsegment = opx->segment;
+ data->twrt = opx->wrt;
+ /*
+ * XXX: improve this if at some point in the future we can
+ * distinguish the subtrahend in expressions like [foo - bar]
+ * where bar is a symbol in the current segment. However, at the
+ * current point, if OPFLAG_RELATIVE is set that subtraction has
+ * already occurred.
+ */
+ data->relbase = 0;
+ data->size = size;
+ out(data);
+}
+
+static void out_reladdr(struct out_data *data, const struct operand *opx,
+ int size)
+{
+ if (opx->opflags & OPFLAG_RELATIVE)
+ nasm_nonfatal("invalid use of self-relative expression");
+
+ data->type = OUT_RELADDR;
+ data->flags = OUT_SIGNED;
+ data->size = size;
+ data->toffset = opx->offset;
+ data->tsegment = opx->segment;
+ data->twrt = opx->wrt;
+ data->relbase = data->offset + (data->inslen - data->insoffs);
+ out(data);
+}
+
+static bool jmp_match(int32_t segment, int64_t offset, int bits,
+ insn * ins, const struct itemplate *temp)
+{
+ int64_t isize;
+ const uint8_t *code = temp->code;
+ uint8_t c = code[0];
+ bool is_byte;
+
+ if (((c & ~1) != 0370) || (ins->oprs[0].type & STRICT))
+ return false;
+ if (!optimizing.level || (optimizing.flag & OPTIM_DISABLE_JMP_MATCH))
+ return false;
+ if (optimizing.level < 0 && c == 0371)
+ return false;
+
+ isize = calcsize(segment, offset, bits, ins, temp);
+
+ if (ins->oprs[0].opflags & OPFLAG_UNKNOWN)
+ /* Be optimistic in pass 1 */
+ return true;
+
+ if (ins->oprs[0].segment != segment)
+ return false;
+
+ isize = ins->oprs[0].offset - offset - isize; /* isize is delta */
+ is_byte = (isize >= -128 && isize <= 127); /* is it byte size? */
+
+ if (is_byte && c == 0371 && ins->prefixes[PPS_REP] == P_BND) {
+ /* jmp short (opcode eb) cannot be used with bnd prefix. */
+ ins->prefixes[PPS_REP] = P_none;
+ /*!
+ *!prefix-bnd [on] invalid BND prefix
+ *!=bnd
+ *! warns about ineffective use of the \c{BND} prefix when the
+ *! \c{JMP} instruction is converted to the \c{SHORT} form.
+ *! This should be extremely rare since the short \c{JMP} only
+ *! is applicable to jumps inside the same module, but if
+ *! it is legitimate, it may be necessary to use
+ *! \c{bnd jmp dword}.
+ */
+ nasm_warn(WARN_PREFIX_BND|ERR_PASS2 ,
+ "jmp short does not init bnd regs - bnd prefix dropped");
+ }
+
+ return is_byte;
+}
+
+static inline int64_t merge_resb(insn *ins, int64_t isize)
+{
+ int nbytes = resb_bytes(ins->opcode);
+
+ if (likely(!nbytes))
+ return isize;
+
+ if (isize != nbytes * ins->oprs[0].offset)
+ return isize; /* Has prefixes of some sort */
+
+ ins->oprs[0].offset *= ins->times;
+ isize *= ins->times;
+ ins->times = 1;
+ return isize;
+}
+
+/* This must be handle non-power-of-2 alignment values */
+static inline size_t pad_bytes(size_t len, size_t align)
+{
+ size_t partial = len % align;
+ return partial ? align - partial : 0;
+}
+
+static void out_eops(struct out_data *data, const extop *e)
+{
+ while (e) {
+ size_t dup = e->dup;
+
+ switch (e->type) {
+ case EOT_NOTHING:
+ break;
+
+ case EOT_EXTOP:
+ while (dup--)
+ out_eops(data, e->val.subexpr);
+ break;
+
+ case EOT_DB_NUMBER:
+ if (e->elem > 8) {
+ nasm_nonfatal("integer supplied as %d-bit data",
+ e->elem << 3);
+ } else {
+ while (dup--) {
+ data->insoffs = 0;
+ data->inslen = data->size = e->elem;
+ data->tsegment = e->val.num.segment;
+ data->toffset = e->val.num.offset;
+ data->twrt = e->val.num.wrt;
+ data->relbase = 0;
+ if (e->val.num.segment != NO_SEG &&
+ (e->val.num.segment & 1)) {
+ data->type = OUT_SEGMENT;
+ data->flags = OUT_UNSIGNED;
+ } else {
+ data->type = e->val.num.relative
+ ? OUT_RELADDR : OUT_ADDRESS;
+ data->flags = OUT_WRAP;
+ }
+ out(data);
+ }
+ }
+ break;
+
+ case EOT_DB_FLOAT:
+ case EOT_DB_STRING:
+ case EOT_DB_STRING_FREE:
+ {
+ size_t pad, len;
+
+ pad = pad_bytes(e->val.string.len, e->elem);
+ len = e->val.string.len + pad;
+
+ while (dup--) {
+ data->insoffs = 0;
+ data->inslen = len;
+ out_rawdata(data, e->val.string.data, e->val.string.len);
+ if (pad)
+ out_rawdata(data, zero_buffer, pad);
+ }
+ break;
+ }
+
+ case EOT_DB_RESERVE:
+ data->insoffs = 0;
+ data->inslen = dup * e->elem;
+ out_reserve(data, data->inslen);
+ break;
+ }
+
+ e = e->next;
+ }
+}
+
+/* This is totally just a wild guess what is reasonable... */
+#define INCBIN_MAX_BUF (ZERO_BUF_SIZE * 16)
+
+int64_t assemble(int32_t segment, int64_t start, int bits, insn *instruction)
+{
+ struct out_data data;
+ const struct itemplate *temp;
+ enum match_result m;
+
+ if (instruction->opcode == I_none)
+ return 0;
+
+ nasm_zero(data);
+ data.offset = start;
+ data.segment = segment;
+ data.itemp = NULL;
+ data.bits = bits;
+
+ if (opcode_is_db(instruction->opcode)) {
+ out_eops(&data, instruction->eops);
+ } else if (instruction->opcode == I_INCBIN) {
+ const char *fname = instruction->eops->val.string.data;
+ FILE *fp;
+ size_t t = instruction->times; /* INCBIN handles TIMES by itself */
+ off_t base = 0;
+ off_t len;
+ const void *map = NULL;
+ char *buf = NULL;
+ size_t blk = 0; /* Buffered I/O block size */
+ size_t m = 0; /* Bytes last read */
+
+ if (!t)
+ goto done;
+
+ fp = nasm_open_read(fname, NF_BINARY|NF_FORMAP);
+ if (!fp) {
+ nasm_nonfatal("`incbin': unable to open file `%s'",
+ fname);
+ goto done;
+ }
+
+ len = nasm_file_size(fp);
+
+ if (len == (off_t)-1) {
+ nasm_nonfatal("`incbin': unable to get length of file `%s'",
+ fname);
+ goto close_done;
+ }
+
+ if (instruction->eops->next) {
+ base = instruction->eops->next->val.num.offset;
+ if (base >= len) {
+ len = 0;
+ } else {
+ len -= base;
+ if (instruction->eops->next->next &&
+ len > (off_t)instruction->eops->next->next->val.num.offset)
+ len = (off_t)instruction->eops->next->next->val.num.offset;
+ }
+ }
+
+ lfmt->set_offset(data.offset);
+ lfmt->uplevel(LIST_INCBIN, len);
+
+ if (!len)
+ goto end_incbin;
+
+ /* Try to map file data */
+ map = nasm_map_file(fp, base, len);
+ if (!map) {
+ blk = len < (off_t)INCBIN_MAX_BUF ? (size_t)len : INCBIN_MAX_BUF;
+ buf = nasm_malloc(blk);
+ }
+
+ while (t--) {
+ /*
+ * Consider these irrelevant for INCBIN, since it is fully
+ * possible that these might be (way) bigger than an int
+ * can hold; there is, however, no reason to widen these
+ * types just for INCBIN. data.inslen == 0 signals to the
+ * backend that these fields are meaningless, if at all
+ * needed.
+ */
+ data.insoffs = 0;
+ data.inslen = 0;
+
+ if (map) {
+ out_rawdata(&data, map, len);
+ } else if ((off_t)m == len) {
+ out_rawdata(&data, buf, len);
+ } else {
+ off_t l = len;
+
+ if (fseeko(fp, base, SEEK_SET) < 0 || ferror(fp)) {
+ nasm_nonfatal("`incbin': unable to seek on file `%s'",
+ fname);
+ goto end_incbin;
+ }
+ while (l > 0) {
+ m = fread(buf, 1, l < (off_t)blk ? (size_t)l : blk, fp);
+ if (!m || feof(fp)) {
+ /*
+ * This shouldn't happen unless the file
+ * actually changes while we are reading
+ * it.
+ */
+ nasm_nonfatal("`incbin': unexpected EOF while"
+ " reading file `%s'", fname);
+ goto end_incbin;
+ }
+ out_rawdata(&data, buf, m);
+ l -= m;
+ }
+ }
+ }
+ end_incbin:
+ lfmt->downlevel(LIST_INCBIN);
+ if (instruction->times > 1) {
+ lfmt->uplevel(LIST_TIMES, instruction->times);
+ lfmt->downlevel(LIST_TIMES);
+ }
+ if (ferror(fp)) {
+ nasm_nonfatal("`incbin': error while"
+ " reading file `%s'", fname);
+ }
+ close_done:
+ if (buf)
+ nasm_free(buf);
+ if (map)
+ nasm_unmap_file(map, len);
+ fclose(fp);
+ done:
+ instruction->times = 1; /* Tell the upper layer not to iterate */
+ ;
+ } else {
+ /* "Real" instruction */
+
+ /* Check to see if we need an address-size prefix */
+ add_asp(instruction, bits);
+
+ m = find_match(&temp, instruction, data.segment, data.offset, bits);
+
+ if (m == MOK_GOOD) {
+ /* Matches! */
+ if (unlikely(itemp_has(temp, IF_OBSOLETE))) {
+ errflags warning;
+ const char *whathappened;
+ const char *validity;
+ bool never = itemp_has(temp, IF_NEVER);
+
+ /*
+ * If IF_OBSOLETE is set, warn the user. Different
+ * warning classes for "obsolete but valid for this
+ * specific CPU" and "obsolete and gone."
+ *
+ *!obsolete-removed [on] instruction obsolete and removed on the target CPU
+ *! warns for an instruction which has been removed
+ *! from the architecture, and is no longer included
+ *! in the CPU definition given in the \c{[CPU]}
+ *! directive, for example \c{POP CS}, the opcode for
+ *! which, \c{0Fh}, instead is an opcode prefix on
+ *! CPUs newer than the first generation 8086.
+ *
+ *!obsolete-nop [on] instruction obsolete and is a noop on the target CPU
+ *! warns for an instruction which has been removed
+ *! from the architecture, but has been architecturally
+ *! defined to be a noop for future CPUs.
+ *
+ *!obsolete-valid [on] instruction obsolete but valid on the target CPU
+ *! warns for an instruction which has been removed
+ *! from the architecture, but is still valid on the
+ *! specific CPU given in the \c{CPU} directive. Code
+ *! using these instructions is most likely not
+ *! forward compatible.
+ */
+
+ whathappened = never ? "never implemented" : "obsolete";
+
+ if (!never && !iflag_cmp_cpu_level(&insns_flags[temp->iflag_idx], &cpu)) {
+ warning = WARN_OBSOLETE_VALID;
+ validity = "but valid on";
+ } else if (itemp_has(temp, IF_NOP)) {
+ warning = WARN_OBSOLETE_NOP;
+ validity = "and is a noop on";
+ } else {
+ warning = WARN_OBSOLETE_REMOVED;
+ validity = never ? "and invalid on" : "and removed from";
+ }
+
+ nasm_warn(warning, "instruction %s %s the target CPU",
+ whathappened, validity);
+ }
+
+ data.itemp = temp;
+ data.bits = bits;
+ data.insoffs = 0;
+
+ data.inslen = calcsize(data.segment, data.offset,
+ bits, instruction, temp);
+ nasm_assert(data.inslen >= 0);
+ data.inslen = merge_resb(instruction, data.inslen);
+
+ gencode(&data, instruction);
+ nasm_assert(data.insoffs == data.inslen);
+ } else {
+ /* No match */
+ switch (m) {
+ case MERR_OPSIZEMISSING:
+ nasm_nonfatal("operation size not specified");
+ break;
+ case MERR_OPSIZEMISMATCH:
+ nasm_nonfatal("mismatch in operand sizes");
+ break;
+ case MERR_BRNOTHERE:
+ nasm_nonfatal("broadcast not permitted on this operand");
+ break;
+ case MERR_BRNUMMISMATCH:
+ nasm_nonfatal("mismatch in the number of broadcasting elements");
+ break;
+ case MERR_MASKNOTHERE:
+ nasm_nonfatal("mask not permitted on this operand");
+ break;
+ case MERR_DECONOTHERE:
+ nasm_nonfatal("unsupported mode decorator for instruction");
+ break;
+ case MERR_BADCPU:
+ nasm_nonfatal("no instruction for this cpu level");
+ break;
+ case MERR_BADMODE:
+ nasm_nonfatal("instruction not supported in %d-bit mode", bits);
+ break;
+ case MERR_ENCMISMATCH:
+ if (!instruction->prefixes[PPS_REX]) {
+ nasm_nonfatal("instruction not encodable without explicit prefix");
+ } else {
+ nasm_nonfatal("instruction not encodable with %s prefix",
+ prefix_name(instruction->prefixes[PPS_REX]));
+ }
+ break;
+ case MERR_BADBND:
+ case MERR_BADREPNE:
+ nasm_nonfatal("%s prefix is not allowed",
+ prefix_name(instruction->prefixes[PPS_REP]));
+ break;
+ case MERR_REGSETSIZE:
+ nasm_nonfatal("invalid register set size");
+ break;
+ case MERR_REGSET:
+ nasm_nonfatal("register set not valid for operand");
+ break;
+ default:
+ nasm_nonfatal("invalid combination of opcode and operands");
+ break;
+ }
+
+ instruction->times = 1; /* Avoid repeated error messages */
+ }
+ }
+ return data.offset - start;
+}
+
+static int32_t eops_typeinfo(const extop *e)
+{
+ int32_t typeinfo = 0;
+
+ while (e) {
+ switch (e->type) {
+ case EOT_NOTHING:
+ break;
+
+ case EOT_EXTOP:
+ typeinfo |= eops_typeinfo(e->val.subexpr);
+ break;
+
+ case EOT_DB_FLOAT:
+ switch (e->elem) {
+ case 1: typeinfo |= TY_BYTE; break;
+ case 2: typeinfo |= TY_WORD; break;
+ case 4: typeinfo |= TY_FLOAT; break;
+ case 8: typeinfo |= TY_QWORD; break; /* double? */
+ case 10: typeinfo |= TY_TBYTE; break; /* long double? */
+ case 16: typeinfo |= TY_YWORD; break;
+ case 32: typeinfo |= TY_ZWORD; break;
+ default: break;
+ }
+ break;
+
+ default:
+ switch (e->elem) {
+ case 1: typeinfo |= TY_BYTE; break;
+ case 2: typeinfo |= TY_WORD; break;
+ case 4: typeinfo |= TY_DWORD; break;
+ case 8: typeinfo |= TY_QWORD; break;
+ case 10: typeinfo |= TY_TBYTE; break;
+ case 16: typeinfo |= TY_YWORD; break;
+ case 32: typeinfo |= TY_ZWORD; break;
+ default: break;
+ }
+ break;
+ }
+ e = e->next;
+ }
+
+ return typeinfo;
+}
+
+static inline void debug_set_db_type(insn *instruction)
+{
+
+ int32_t typeinfo = TYS_ELEMENTS(instruction->operands);
+
+ typeinfo |= eops_typeinfo(instruction->eops);
+ dfmt->debug_typevalue(typeinfo);
+}
+
+static void debug_set_type(insn *instruction)
+{
+ int32_t typeinfo;
+
+ if (opcode_is_resb(instruction->opcode)) {
+ typeinfo = TYS_ELEMENTS(instruction->oprs[0].offset);
+
+ switch (instruction->opcode) {
+ case I_RESB:
+ typeinfo |= TY_BYTE;
+ break;
+ case I_RESW:
+ typeinfo |= TY_WORD;
+ break;
+ case I_RESD:
+ typeinfo |= TY_DWORD;
+ break;
+ case I_RESQ:
+ typeinfo |= TY_QWORD;
+ break;
+ case I_REST:
+ typeinfo |= TY_TBYTE;
+ break;
+ case I_RESO:
+ typeinfo |= TY_OWORD;
+ break;
+ case I_RESY:
+ typeinfo |= TY_YWORD;
+ break;
+ case I_RESZ:
+ typeinfo |= TY_ZWORD;
+ break;
+ default:
+ panic();
+ }
+ } else {
+ typeinfo = TY_LABEL;
+ }
+
+ dfmt->debug_typevalue(typeinfo);
+}
+
+
+/* Proecess an EQU directive */
+static void define_equ(insn * instruction)
+{
+ if (!instruction->label) {
+ nasm_nonfatal("EQU not preceded by label");
+ } else if (instruction->operands == 1 &&
+ (instruction->oprs[0].type & IMMEDIATE) &&
+ instruction->oprs[0].wrt == NO_SEG) {
+ define_label(instruction->label,
+ instruction->oprs[0].segment,
+ instruction->oprs[0].offset, false);
+ } else if (instruction->operands == 2
+ && (instruction->oprs[0].type & IMMEDIATE)
+ && (instruction->oprs[0].type & COLON)
+ && instruction->oprs[0].segment == NO_SEG
+ && instruction->oprs[0].wrt == NO_SEG
+ && (instruction->oprs[1].type & IMMEDIATE)
+ && instruction->oprs[1].segment == NO_SEG
+ && instruction->oprs[1].wrt == NO_SEG) {
+ define_label(instruction->label,
+ instruction->oprs[0].offset | SEG_ABS,
+ instruction->oprs[1].offset, false);
+ } else {
+ nasm_nonfatal("bad syntax for EQU");
+ }
+}
+
+static int64_t len_extops(const extop *e)
+{
+ int64_t isize = 0;
+ size_t pad;
+
+ while (e) {
+ switch (e->type) {
+ case EOT_NOTHING:
+ break;
+
+ case EOT_EXTOP:
+ isize += e->dup * len_extops(e->val.subexpr);
+ break;
+
+ case EOT_DB_STRING:
+ case EOT_DB_STRING_FREE:
+ case EOT_DB_FLOAT:
+ pad = pad_bytes(e->val.string.len, e->elem);
+ isize += e->dup * (e->val.string.len + pad);
+ break;
+
+ case EOT_DB_NUMBER:
+ warn_overflow_const(e->val.num.offset, e->elem);
+ isize += e->dup * e->elem;
+ break;
+
+ case EOT_DB_RESERVE:
+ isize += e->dup * e->elem;
+ break;
+ }
+
+ e = e->next;
+ }
+
+ return isize;
+}
+
+int64_t insn_size(int32_t segment, int64_t offset, int bits, insn *instruction)
+{
+ const struct itemplate *temp;
+ enum match_result m;
+ int64_t isize = 0;
+
+ if (instruction->opcode == I_none) {
+ return 0;
+ } else if (instruction->opcode == I_EQU) {
+ define_equ(instruction);
+ return 0;
+ } else if (opcode_is_db(instruction->opcode)) {
+ isize = len_extops(instruction->eops);
+ debug_set_db_type(instruction);
+ return isize;
+ } else if (instruction->opcode == I_INCBIN) {
+ const extop *e = instruction->eops;
+ const char *fname = e->val.string.data;
+ off_t len;
+
+ len = nasm_file_size_by_path(fname);
+ if (len == (off_t)-1) {
+ nasm_nonfatal("`incbin': unable to get length of file `%s'",
+ fname);
+ return 0;
+ }
+
+ e = e->next;
+ if (e) {
+ if (len <= (off_t)e->val.num.offset) {
+ len = 0;
+ } else {
+ len -= e->val.num.offset;
+ e = e->next;
+ if (e && len > (off_t)e->val.num.offset) {
+ len = (off_t)e->val.num.offset;
+ }
+ }
+ }
+
+ len *= instruction->times;
+ instruction->times = 1; /* Tell the upper layer to not iterate */
+
+ return len;
+ } else {
+ /* Normal instruction, or RESx */
+
+ /* Check to see if we need an address-size prefix */
+ add_asp(instruction, bits);
+
+ m = find_match(&temp, instruction, segment, offset, bits);
+ if (m != MOK_GOOD)
+ return -1; /* No match */
+
+ isize = calcsize(segment, offset, bits, instruction, temp);
+ debug_set_type(instruction);
+ isize = merge_resb(instruction, isize);
+
+ return isize;
+ }
+}
+
+static void bad_hle_warn(const insn * ins, uint8_t hleok)
+{
+ enum prefixes rep_pfx = ins->prefixes[PPS_REP];
+ enum whatwarn { w_none, w_lock, w_inval } ww;
+ static const enum whatwarn warn[2][4] =
+ {
+ { w_inval, w_inval, w_none, w_lock }, /* XACQUIRE */
+ { w_inval, w_none, w_none, w_lock }, /* XRELEASE */
+ };
+ unsigned int n;
+
+ n = (unsigned int)rep_pfx - P_XACQUIRE;
+ if (n > 1)
+ return; /* Not XACQUIRE/XRELEASE */
+
+ ww = warn[n][hleok];
+ if (!is_class(MEMORY, ins->oprs[0].type))
+ ww = w_inval; /* HLE requires operand 0 to be memory */
+
+ /*!
+ *!prefix-hle [on] invalid HLE prefix
+ *!=hle
+ *! warns about invalid use of the HLE \c{XACQUIRE} or \c{XRELEASE}
+ *! prefixes.
+ */
+ switch (ww) {
+ case w_none:
+ break;
+
+ case w_lock:
+ if (ins->prefixes[PPS_LOCK] != P_LOCK) {
+ nasm_warn(WARN_PREFIX_HLE|ERR_PASS2,
+ "%s with this instruction requires lock",
+ prefix_name(rep_pfx));
+ }
+ break;
+
+ case w_inval:
+ nasm_warn(WARN_PREFIX_HLE|ERR_PASS2,
+ "%s invalid with this instruction",
+ prefix_name(rep_pfx));
+ break;
+ }
+}
+
+/* Common construct */
+#define case3(x) case (x): case (x)+1: case (x)+2
+#define case4(x) case3(x): case (x)+3
+
+static int64_t calcsize(int32_t segment, int64_t offset, int bits,
+ insn * ins, const struct itemplate *temp)
+{
+ const uint8_t *codes = temp->code;
+ int64_t length = 0;
+ uint8_t c;
+ int rex_mask = ~0;
+ int op1, op2;
+ struct operand *opx;
+ uint8_t opex = 0;
+ enum ea_type eat;
+ uint8_t hleok = 0;
+ bool lockcheck = true;
+ enum reg_enum mib_index = R_none; /* For a separate index reg form */
+ const char *errmsg;
+
+ ins->rex = 0; /* Ensure REX is reset */
+ eat = EA_SCALAR; /* Expect a scalar EA */
+ memset(ins->evex_p, 0, 3); /* Ensure EVEX is reset */
+
+ if (ins->prefixes[PPS_OSIZE] == P_O64)
+ ins->rex |= REX_W;
+
+ (void)segment; /* Don't warn that this parameter is unused */
+ (void)offset; /* Don't warn that this parameter is unused */
+
+ while (*codes) {
+ c = *codes++;
+ op1 = (c & 3) + ((opex & 1) << 2);
+ op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
+ opx = &ins->oprs[op1];
+ opex = 0; /* For the next iteration */
+
+ switch (c) {
+ case4(01):
+ codes += c, length += c;
+ break;
+
+ case3(05):
+ opex = c;
+ break;
+
+ case4(010):
+ ins->rex |=
+ op_rexflags(opx, REX_B|REX_H|REX_P|REX_W);
+ codes++, length++;
+ break;
+
+ case4(014):
+ /* this is an index reg of a split SIB operand */
+ mib_index = opx->basereg;
+ break;
+
+ case4(020):
+ case4(024):
+ length++;
+ break;
+
+ case4(030):
+ length += 2;
+ break;
+
+ case4(034):
+ if (opx->type & (BITS16 | BITS32 | BITS64))
+ length += (opx->type & BITS16) ? 2 : 4;
+ else
+ length += (bits == 16) ? 2 : 4;
+ break;
+
+ case4(040):
+ length += 4;
+ break;
+
+ case4(044):
+ length += ins->addr_size >> 3;
+ break;
+
+ case4(050):
+ length++;
+ break;
+
+ case4(054):
+ length += 8; /* MOV reg64/imm */
+ break;
+
+ case4(060):
+ length += 2;
+ break;
+
+ case4(064):
+ if (opx->type & (BITS16 | BITS32 | BITS64))
+ length += (opx->type & BITS16) ? 2 : 4;
+ else
+ length += (bits == 16) ? 2 : 4;
+ break;
+
+ case4(070):
+ length += 4;
+ break;
+
+ case4(074):
+ length += 2;
+ break;
+
+ case 0171:
+ c = *codes++;
+ op2 = (op2 & ~3) | ((c >> 3) & 3);
+ opx = &ins->oprs[op2];
+ ins->rex |= op_rexflags(opx, REX_R|REX_H|REX_P|REX_W);
+ length++;
+ break;
+
+ case 0172:
+ case 0173:
+ codes++;
+ length++;
+ break;
+
+ case4(0174):
+ length++;
+ break;
+
+ case4(0240):
+ ins->rex |= REX_EV;
+ ins->vexreg = regval(opx);
+ ins->evex_p[2] |= op_evexflags(opx, EVEX_P2VP, 2); /* High-16 NDS */
+ ins->vex_cm = *codes++;
+ ins->vex_wlp = *codes++;
+ ins->evex_tuple = (*codes++ - 0300);
+ break;
+
+ case 0250:
+ ins->rex |= REX_EV;
+ ins->vexreg = 0;
+ ins->vex_cm = *codes++;
+ ins->vex_wlp = *codes++;
+ ins->evex_tuple = (*codes++ - 0300);
+ break;
+
+ case4(0254):
+ length += 4;
+ break;
+
+ case4(0260):
+ ins->rex |= REX_V;
+ ins->vexreg = regval(opx);
+ ins->vex_cm = *codes++;
+ ins->vex_wlp = *codes++;
+ break;
+
+ case 0270:
+ ins->rex |= REX_V;
+ ins->vexreg = 0;
+ ins->vex_cm = *codes++;
+ ins->vex_wlp = *codes++;
+ break;
+
+ case3(0271):
+ hleok = c & 3;
+ break;
+
+ case4(0274):
+ length++;
+ break;
+
+ case4(0300):
+ break;
+
+ case 0310:
+ if (bits == 64)
+ return -1;
+ length += (bits != 16) && !has_prefix(ins, PPS_ASIZE, P_A16);
+ break;
+
+ case 0311:
+ length += (bits != 32) && !has_prefix(ins, PPS_ASIZE, P_A32);
+ break;
+
+ case 0312:
+ break;
+
+ case 0313:
+ if (bits != 64 || has_prefix(ins, PPS_ASIZE, P_A16) ||
+ has_prefix(ins, PPS_ASIZE, P_A32))
+ return -1;
+ break;
+
+ case4(0314):
+ break;
+
+ case 0320:
+ {
+ /*! prefix-opsize [on] invalid operand size prefix
+ *! warns that an operand prefix (\c{o16}, \c{o32}, \c{o64},
+ *! \c{osp}) invalid for the specified instruction has been specified.
+ *! The operand prefix will be ignored by the assembler.
+ */
+ enum prefixes pfx = ins->prefixes[PPS_OSIZE];
+ if (pfx == P_O16)
+ break;
+ if (pfx != P_none)
+ nasm_warn(WARN_PREFIX_OPSIZE|ERR_PASS2,
+ "invalid operand size prefix, must be o16");
+ else
+ ins->prefixes[PPS_OSIZE] = P_O16;
+ break;
+ }
+
+ case 0321:
+ {
+ enum prefixes pfx = ins->prefixes[PPS_OSIZE];
+ if (pfx == P_O32)
+ break;
+ if (pfx != P_none)
+ nasm_warn(WARN_PREFIX_OPSIZE|ERR_PASS2,
+ "invalid operand size prefix, must be o32");
+ else
+ ins->prefixes[PPS_OSIZE] = P_O32;
+ break;
+ }
+
+ case 0322:
+ break;
+
+ case 0323:
+ rex_mask &= ~REX_W;
+ break;
+
+ case 0324:
+ ins->rex |= REX_W;
+ break;
+
+ case 0325:
+ ins->rex |= REX_NH;
+ break;
+
+ case 0326:
+ break;
+
+ case 0331:
+ break;
+
+ case 0332:
+ case 0333:
+ length++;
+ break;
+
+ case 0334:
+ ins->rex |= REX_L;
+ break;
+
+ case 0335:
+ break;
+
+ case 0336:
+ if (!ins->prefixes[PPS_REP])
+ ins->prefixes[PPS_REP] = P_REP;
+ break;
+
+ case 0337:
+ if (!ins->prefixes[PPS_REP])
+ ins->prefixes[PPS_REP] = P_REPNE;
+ break;
+
+ case 0340:
+ /*!
+ *!forward [on] forward reference may have unpredictable results
+ *! warns that a forward reference is used which may have
+ *! unpredictable results, notably in a \c{RESB}-type
+ *! pseudo-instruction. These would be \i\e{critical
+ *! expressions} (see \k{crit}) but are permitted in a
+ *! handful of cases for compatibility with older
+ *! versions of NASM. This warning should be treated as a
+ *! severe programming error as the code could break at
+ *! any time for any number of reasons.
+ */
+ if (!absolute_op(&ins->oprs[0]))
+ nasm_nonfatal("attempt to reserve non-constant"
+ " quantity of BSS space");
+ else if (ins->oprs[0].opflags & OPFLAG_FORWARD)
+ nasm_warn(WARN_FORWARD, "forward reference in RESx "
+ "can have unpredictable results");
+ else
+ length += ins->oprs[0].offset * resb_bytes(ins->opcode);
+ break;
+
+ case 0341:
+ if (!ins->prefixes[PPS_WAIT])
+ ins->prefixes[PPS_WAIT] = P_WAIT;
+ break;
+
+ case 0360:
+ break;
+
+ case 0361:
+ length++;
+ break;
+
+ case 0364:
+ case 0365:
+ break;
+
+ case 0366:
+ case 0367:
+ length++;
+ break;
+
+ case 0370:
+ case 0371:
+ break;
+
+ case 0373:
+ length++;
+ break;
+
+ case 0374:
+ eat = EA_XMMVSIB;
+ break;
+
+ case 0375:
+ eat = EA_YMMVSIB;
+ break;
+
+ case 0376:
+ eat = EA_ZMMVSIB;
+ break;
+
+ case4(0100):
+ case4(0110):
+ case4(0120):
+ case4(0130):
+ case4(0200):
+ case4(0204):
+ case4(0210):
+ case4(0214):
+ case4(0220):
+ case4(0224):
+ case4(0230):
+ case4(0234):
+ {
+ ea ea_data;
+ int rfield;
+ opflags_t rflags;
+ struct operand *opy = &ins->oprs[op2];
+ struct operand *op_er_sae;
+
+ ea_data.rex = 0; /* Ensure ea.REX is initially 0 */
+
+ if (c <= 0177) {
+ /* pick rfield from operand b (opx) */
+ rflags = regflag(opx);
+ rfield = nasm_regvals[opx->basereg];
+ } else {
+ rflags = 0;
+ rfield = c & 7;
+ }
+
+ /* EVEX.b1 : evex_brerop contains the operand position */
+ op_er_sae = (ins->evex_brerop >= 0 ?
+ &ins->oprs[ins->evex_brerop] : NULL);
+
+ if (op_er_sae && (op_er_sae->decoflags & (ER | SAE))) {
+ /* set EVEX.b */
+ ins->evex_p[2] |= EVEX_P2B;
+ if (op_er_sae->decoflags & ER) {
+ /* set EVEX.RC (rounding control) */
+ ins->evex_p[2] |= ((ins->evex_rm - BRC_RN) << 5)
+ & EVEX_P2RC;
+ }
+ } else {
+ /* set EVEX.L'L (vector length) */
+ ins->evex_p[2] |= ((ins->vex_wlp << (5 - 2)) & EVEX_P2LL);
+ ins->evex_p[1] |= ((ins->vex_wlp << (7 - 4)) & EVEX_P1W);
+ if (opy->decoflags & BRDCAST_MASK) {
+ /* set EVEX.b */
+ ins->evex_p[2] |= EVEX_P2B;
+ }
+ }
+
+ if (itemp_has(temp, IF_MIB)) {
+ opy->eaflags |= EAF_MIB;
+ /*
+ * if a separate form of MIB (ICC style) is used,
+ * the index reg info is merged into mem operand
+ */
+ if (mib_index != R_none) {
+ opy->indexreg = mib_index;
+ opy->scale = 1;
+ opy->hintbase = mib_index;
+ opy->hinttype = EAH_NOTBASE;
+ }
+ }
+
+ /* SIB encoding required */
+ if (itemp_has(temp, IF_SIB))
+ opy->eaflags |= EAF_SIB;
+
+ if (process_ea(opy, &ea_data, bits,
+ rfield, rflags, ins, eat, &errmsg)) {
+ nasm_nonfatal("%s", errmsg);
+ return -1;
+ } else {
+ ins->rex |= ea_data.rex;
+ length += ea_data.size;
+ }
+ }
+ break;
+
+ default:
+ nasm_panic("internal instruction table corrupt"
+ ": instruction code \\%o (0x%02X) given", c, c);
+ break;
+ }
+ }
+
+ ins->rex &= rex_mask;
+
+ if (ins->rex & REX_NH) {
+ if (ins->rex & REX_H) {
+ nasm_nonfatal("instruction cannot use high registers");
+ return -1;
+ }
+ ins->rex &= ~REX_P; /* Don't force REX prefix due to high reg */
+ }
+
+ switch (ins->prefixes[PPS_REX]) {
+ case P_EVEX:
+ if (!(ins->rex & REX_EV))
+ return -1;
+ break;
+ case P_VEX:
+ case P_VEX3:
+ case P_VEX2:
+ if (!(ins->rex & REX_V))
+ return -1;
+ break;
+ case P_REX:
+ if (ins->rex & (REX_V|REX_EV))
+ return -1;
+ ins->rex |= REX_P; /* Force REX prefix */
+ break;
+ default:
+ break;
+ }
+
+ if (ins->rex & (REX_V | REX_EV)) {
+ int bad32 = REX_R|REX_W|REX_X|REX_B;
+
+ if (ins->rex & REX_H) {
+ nasm_nonfatal("cannot use high register in AVX instruction");
+ return -1;
+ }
+ switch (ins->vex_wlp & 060) {
+ case 000:
+ case 040:
+ ins->rex &= ~REX_W;
+ break;
+ case 020:
+ ins->rex |= REX_W;
+ bad32 &= ~REX_W;
+ break;
+ case 060:
+ /* Follow REX_W */
+ break;
+ }
+
+ if (bits != 64 && ((ins->rex & bad32) || ins->vexreg > 7)) {
+ nasm_nonfatal("invalid operands in non-64-bit mode");
+ return -1;
+ } else if (!(ins->rex & REX_EV) &&
+ ((ins->vexreg > 15) || (ins->evex_p[0] & 0xf0))) {
+ nasm_nonfatal("invalid high-16 register in non-AVX-512");
+ return -1;
+ }
+ if (ins->rex & REX_EV) {
+ length += 4;
+ } else if (ins->vex_cm != 1 || (ins->rex & (REX_W|REX_X|REX_B)) ||
+ ins->prefixes[PPS_REX] == P_VEX3) {
+ if (ins->prefixes[PPS_REX] == P_VEX2)
+ nasm_nonfatal("instruction not encodable with {vex2} prefix");
+ length += 3;
+ } else {
+ length += 2;
+ }
+ } else if (ins->rex & REX_MASK) {
+ if (ins->rex & REX_H) {
+ nasm_nonfatal("cannot use high byte register in rex instruction");
+ return -1;
+ } else if (bits == 64) {
+ length++;
+ } else if ((ins->rex & REX_L) &&
+ !(ins->rex & (REX_P|REX_W|REX_X|REX_B)) &&
+ iflag_cpu_level_ok(&cpu, IF_X86_64)) {
+ /* LOCK-as-REX.R */
+ assert_no_prefix(ins, PPS_LOCK);
+ lockcheck = false; /* Already errored, no need for warning */
+ length++;
+ } else {
+ nasm_nonfatal("invalid operands in non-64-bit mode");
+ return -1;
+ }
+ }
+
+ if (has_prefix(ins, PPS_LOCK, P_LOCK) && lockcheck &&
+ (!itemp_has(temp,IF_LOCK) || !is_class(MEMORY, ins->oprs[0].type))) {
+ /*!
+ *!prefix-lock [on] LOCK prefix on unlockable instructions
+ *!=lock
+ *! warns about \c{LOCK} prefixes on unlockable instructions.
+ */
+ nasm_warn(WARN_PREFIX_LOCK|ERR_PASS2 , "instruction is not lockable");
+ }
+
+ bad_hle_warn(ins, hleok);
+
+ /*
+ * when BND prefix is set by DEFAULT directive,
+ * BND prefix is added to every appropriate instruction line
+ * unless it is overridden by NOBND prefix.
+ */
+ if (globalbnd &&
+ (itemp_has(temp, IF_BND) && !has_prefix(ins, PPS_REP, P_NOBND)))
+ ins->prefixes[PPS_REP] = P_BND;
+
+ /*
+ * Add length of legacy prefixes
+ */
+ length += emit_prefix(NULL, bits, ins);
+
+ return length;
+}
+
+static inline void emit_rex(struct out_data *data, insn *ins)
+{
+ if (data->bits == 64) {
+ if ((ins->rex & REX_MASK) &&
+ !(ins->rex & (REX_V | REX_EV)) &&
+ !ins->rex_done) {
+ uint8_t rex = (ins->rex & REX_MASK) | REX_P;
+ out_rawbyte(data, rex);
+ ins->rex_done = true;
+ }
+ }
+}
+
+static int emit_prefix(struct out_data *data, const int bits, insn *ins)
+{
+ int bytes = 0;
+ int j;
+
+ for (j = 0; j < MAXPREFIX; j++) {
+ uint8_t c = 0;
+ switch (ins->prefixes[j]) {
+ case P_WAIT:
+ c = 0x9B;
+ break;
+ case P_LOCK:
+ c = 0xF0;
+ break;
+ case P_REPNE:
+ case P_REPNZ:
+ case P_XACQUIRE:
+ case P_BND:
+ c = 0xF2;
+ break;
+ case P_REPE:
+ case P_REPZ:
+ case P_REP:
+ case P_XRELEASE:
+ c = 0xF3;
+ break;
+ case R_CS:
+ /*!
+ *!prefix-seg [on] segment prefix ignored in 64-bit mode
+ *! warns that an \c{es}, \c{cs}, \c{ss} or \c{ds} segment override
+ *! prefix has no effect in 64-bit mode. The prefix will still be
+ *! generated as requested.
+ */
+ if (bits == 64)
+ nasm_warn(WARN_PREFIX_SEG|ERR_PASS2, "cs segment base generated, "
+ "but will be ignored in 64-bit mode");
+ c = 0x2E;
+ break;
+ case R_DS:
+ if (bits == 64)
+ nasm_warn(WARN_PREFIX_SEG|ERR_PASS2, "ds segment base generated, "
+ "but will be ignored in 64-bit mode");
+ c = 0x3E;
+ break;
+ case R_ES:
+ if (bits == 64)
+ nasm_warn(WARN_PREFIX_SEG|ERR_PASS2, "es segment base generated, "
+ "but will be ignored in 64-bit mode");
+ c = 0x26;
+ break;
+ case R_FS:
+ c = 0x64;
+ break;
+ case R_GS:
+ c = 0x65;
+ break;
+ case R_SS:
+ if (bits == 64) {
+ nasm_warn(WARN_PREFIX_SEG|ERR_PASS2, "ss segment base generated, "
+ "but will be ignored in 64-bit mode");
+ }
+ c = 0x36;
+ break;
+ case R_SEGR6:
+ case R_SEGR7:
+ nasm_nonfatal("segr6 and segr7 cannot be used as prefixes");
+ break;
+ case P_A16:
+ if (bits == 64) {
+ nasm_nonfatal("16-bit addressing is not supported "
+ "in 64-bit mode");
+ } else if (bits != 16)
+ c = 0x67;
+ break;
+ case P_A32:
+ if (bits != 32)
+ c = 0x67;
+ break;
+ case P_A64:
+ if (bits != 64) {
+ nasm_nonfatal("64-bit addressing is only supported "
+ "in 64-bit mode");
+ }
+ break;
+ case P_ASP:
+ c = 0x67;
+ break;
+ case P_O16:
+ if (bits != 16)
+ c = 0x66;
+ break;
+ case P_O32:
+ if (bits == 16)
+ c = 0x66;
+ break;
+ case P_O64:
+ /* REX.W */
+ break;
+ case P_OSP:
+ c = 0x66;
+ break;
+ case P_REX:
+ case P_VEX:
+ case P_EVEX:
+ case P_VEX3:
+ case P_VEX2:
+ case P_NOBND:
+ case P_none:
+ break;
+ default:
+ nasm_panic("invalid instruction prefix");
+ }
+ if (c) {
+ if (data)
+ out_rawbyte(data, c);
+ bytes++;
+ }
+ }
+ return bytes;
+}
+
+static void gencode(struct out_data *data, insn *ins)
+{
+ uint8_t c;
+ uint8_t bytes[4];
+ int64_t size;
+ int op1, op2;
+ struct operand *opx;
+ const uint8_t *codes = data->itemp->code;
+ uint8_t opex = 0;
+ enum ea_type eat = EA_SCALAR;
+ int r;
+ const int bits = data->bits;
+ const char *errmsg;
+
+ ins->rex_done = false;
+
+ emit_prefix(data, bits, ins);
+
+ while (*codes) {
+ c = *codes++;
+ op1 = (c & 3) + ((opex & 1) << 2);
+ op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
+ opx = &ins->oprs[op1];
+ opex = 0; /* For the next iteration */
+
+
+ switch (c) {
+ case 01:
+ case 02:
+ case 03:
+ case 04:
+ emit_rex(data, ins);
+ out_rawdata(data, codes, c);
+ codes += c;
+ break;
+
+ case 05:
+ case 06:
+ case 07:
+ opex = c;
+ break;
+
+ case4(010):
+ emit_rex(data, ins);
+ out_rawbyte(data, *codes++ + (regval(opx) & 7));
+ break;
+
+ case4(014):
+ break;
+
+ case4(020):
+ out_imm(data, opx, 1, OUT_WRAP);
+ break;
+
+ case4(024):
+ out_imm(data, opx, 1, OUT_UNSIGNED);
+ break;
+
+ case4(030):
+ out_imm(data, opx, 2, OUT_WRAP);
+ break;
+
+ case4(034):
+ if (opx->type & (BITS16 | BITS32))
+ size = (opx->type & BITS16) ? 2 : 4;
+ else
+ size = (bits == 16) ? 2 : 4;
+ out_imm(data, opx, size, OUT_WRAP);
+ break;
+
+ case4(040):
+ out_imm(data, opx, 4, OUT_WRAP);
+ break;
+
+ case4(044):
+ size = ins->addr_size >> 3;
+ out_imm(data, opx, size, OUT_WRAP);
+ break;
+
+ case4(050):
+ if (opx->segment == data->segment) {
+ int64_t delta = opx->offset - data->offset
+ - (data->inslen - data->insoffs);
+ if (delta > 127 || delta < -128)
+ nasm_nonfatal("short jump is out of range");
+ }
+ out_reladdr(data, opx, 1);
+ break;
+
+ case4(054):
+ out_imm(data, opx, 8, OUT_WRAP);
+ break;
+
+ case4(060):
+ out_reladdr(data, opx, 2);
+ break;
+
+ case4(064):
+ if (opx->type & (BITS16 | BITS32 | BITS64))
+ size = (opx->type & BITS16) ? 2 : 4;
+ else
+ size = (bits == 16) ? 2 : 4;
+
+ out_reladdr(data, opx, size);
+ break;
+
+ case4(070):
+ out_reladdr(data, opx, 4);
+ break;
+
+ case4(074):
+ if (opx->segment == NO_SEG)
+ nasm_nonfatal("value referenced by FAR is not relocatable");
+ out_segment(data, opx);
+ break;
+
+ case 0171:
+ c = *codes++;
+ op2 = (op2 & ~3) | ((c >> 3) & 3);
+ opx = &ins->oprs[op2];
+ r = nasm_regvals[opx->basereg];
+ c = (c & ~070) | ((r & 7) << 3);
+ out_rawbyte(data, c);
+ break;
+
+ case 0172:
+ {
+ int mask = ins->prefixes[PPS_REX] == P_EVEX ? 7 : 15;
+ const struct operand *opy;
+
+ c = *codes++;
+ opx = &ins->oprs[c >> 3];
+ opy = &ins->oprs[c & 7];
+ if (!absolute_op(opy))
+ nasm_nonfatal("non-absolute expression not permitted "
+ "as argument %d", c & 7);
+ else if (opy->offset & ~mask)
+ nasm_warn(ERR_PASS2|WARN_NUMBER_OVERFLOW,
+ "is4 argument exceeds bounds");
+ c = opy->offset & mask;
+ goto emit_is4;
+ }
+
+ case 0173:
+ c = *codes++;
+ opx = &ins->oprs[c >> 4];
+ c &= 15;
+ goto emit_is4;
+
+ case4(0174):
+ c = 0;
+ emit_is4:
+ r = nasm_regvals[opx->basereg];
+ out_rawbyte(data, (r << 4) | ((r & 0x10) >> 1) | c);
+ break;
+
+ case4(0254):
+ if (absolute_op(opx) &&
+ (int32_t)opx->offset != (int64_t)opx->offset) {
+ nasm_warn(ERR_PASS2|WARN_NUMBER_OVERFLOW,
+ "signed dword immediate exceeds bounds");
+ }
+ out_imm(data, opx, 4, OUT_SIGNED);
+ break;
+
+ case4(0240):
+ case 0250:
+ codes += 3;
+ ins->evex_p[2] |= op_evexflags(&ins->oprs[0],
+ EVEX_P2Z | EVEX_P2AAA, 2);
+ ins->evex_p[2] ^= EVEX_P2VP; /* 1's complement */
+ bytes[0] = 0x62;
+ /* EVEX.X can be set by either REX or EVEX for different reasons */
+ bytes[1] = ((((ins->rex & 7) << 5) |
+ (ins->evex_p[0] & (EVEX_P0X | EVEX_P0RP))) ^ 0xf0) |
+ (ins->vex_cm & EVEX_P0MM);
+ bytes[2] = ((ins->rex & REX_W) << (7 - 3)) |
+ ((~ins->vexreg & 15) << 3) |
+ (1 << 2) | (ins->vex_wlp & 3);
+ bytes[3] = ins->evex_p[2];
+ out_rawdata(data, bytes, 4);
+ break;
+
+ case4(0260):
+ case 0270:
+ codes += 2;
+ if (ins->vex_cm != 1 || (ins->rex & (REX_W|REX_X|REX_B)) ||
+ ins->prefixes[PPS_REX] == P_VEX3) {
+ bytes[0] = (ins->vex_cm >> 6) ? 0x8f : 0xc4;
+ bytes[1] = (ins->vex_cm & 31) | ((~ins->rex & 7) << 5);
+ bytes[2] = ((ins->rex & REX_W) << (7-3)) |
+ ((~ins->vexreg & 15)<< 3) | (ins->vex_wlp & 07);
+ out_rawdata(data, bytes, 3);
+ } else {
+ bytes[0] = 0xc5;
+ bytes[1] = ((~ins->rex & REX_R) << (7-2)) |
+ ((~ins->vexreg & 15) << 3) | (ins->vex_wlp & 07);
+ out_rawdata(data, bytes, 2);
+ }
+ break;
+
+ case 0271:
+ case 0272:
+ case 0273:
+ break;
+
+ case4(0274):
+ {
+ uint64_t uv, um;
+ int s;
+
+ if (absolute_op(opx)) {
+ if (ins->rex & REX_W)
+ s = 64;
+ else if (ins->prefixes[PPS_OSIZE] == P_O16)
+ s = 16;
+ else if (ins->prefixes[PPS_OSIZE] == P_O32)
+ s = 32;
+ else
+ s = bits;
+
+ um = (uint64_t)2 << (s-1);
+ uv = opx->offset;
+
+ if (uv > 127 && uv < (uint64_t)-128 &&
+ (uv < um-128 || uv > um-1)) {
+ /* If this wasn't explicitly byte-sized, warn as though we
+ * had fallen through to the imm16/32/64 case.
+ */
+ nasm_warn(ERR_PASS2|WARN_NUMBER_OVERFLOW,
+ "%s value exceeds bounds",
+ (opx->type & BITS8) ? "signed byte" :
+ s == 16 ? "word" :
+ s == 32 ? "dword" :
+ "signed dword");
+ }
+
+ /* Output as a raw byte to avoid byte overflow check */
+ out_rawbyte(data, (uint8_t)uv);
+ } else {
+ out_imm(data, opx, 1, OUT_WRAP); /* XXX: OUT_SIGNED? */
+ }
+ break;
+ }
+
+ case4(0300):
+ break;
+
+ case 0310:
+ if (bits == 32 && !has_prefix(ins, PPS_ASIZE, P_A16))
+ out_rawbyte(data, 0x67);
+ break;
+
+ case 0311:
+ if (bits != 32 && !has_prefix(ins, PPS_ASIZE, P_A32))
+ out_rawbyte(data, 0x67);
+ break;
+
+ case 0312:
+ break;
+
+ case 0313:
+ break;
+
+ case4(0314):
+ break;
+
+ case 0320:
+ case 0321:
+ break;
+
+ case 0322:
+ case 0323:
+ break;
+
+ case 0324:
+ ins->rex |= REX_W;
+ break;
+
+ case 0325:
+ break;
+
+ case 0326:
+ break;
+
+ case 0331:
+ break;
+
+ case 0332:
+ case 0333:
+ out_rawbyte(data, c - 0332 + 0xF2);
+ break;
+
+ case 0334:
+ if (ins->rex & REX_R)
+ out_rawbyte(data, 0xF0);
+ ins->rex &= ~(REX_L|REX_R);
+ break;
+
+ case 0335:
+ break;
+
+ case 0336:
+ case 0337:
+ break;
+
+ case 0340:
+ if (ins->oprs[0].segment != NO_SEG)
+ nasm_panic("non-constant BSS size in pass two");
+
+ out_reserve(data, ins->oprs[0].offset * resb_bytes(ins->opcode));
+ break;
+
+ case 0341:
+ break;
+
+ case 0360:
+ break;
+
+ case 0361:
+ out_rawbyte(data, 0x66);
+ break;
+
+ case 0364:
+ case 0365:
+ break;
+
+ case 0366:
+ case 0367:
+ out_rawbyte(data, c - 0366 + 0x66);
+ break;
+
+ case3(0370):
+ break;
+
+ case 0373:
+ out_rawbyte(data, bits == 16 ? 3 : 5);
+ break;
+
+ case 0374:
+ eat = EA_XMMVSIB;
+ break;
+
+ case 0375:
+ eat = EA_YMMVSIB;
+ break;
+
+ case 0376:
+ eat = EA_ZMMVSIB;
+ break;
+
+ case4(0100):
+ case4(0110):
+ case4(0120):
+ case4(0130):
+ case4(0200):
+ case4(0204):
+ case4(0210):
+ case4(0214):
+ case4(0220):
+ case4(0224):
+ case4(0230):
+ case4(0234):
+ {
+ ea ea_data;
+ int rfield;
+ opflags_t rflags;
+ uint8_t *p;
+ struct operand *opy = &ins->oprs[op2];
+
+ if (c <= 0177) {
+ /* pick rfield from operand b (opx) */
+ rflags = regflag(opx);
+ rfield = nasm_regvals[opx->basereg];
+ } else {
+ /* rfield is constant */
+ rflags = 0;
+ rfield = c & 7;
+ }
+
+ if (process_ea(opy, &ea_data, bits,
+ rfield, rflags, ins, eat, &errmsg))
+ nasm_nonfatal("%s", errmsg);
+
+ p = bytes;
+ *p++ = ea_data.modrm;
+ if (ea_data.sib_present)
+ *p++ = ea_data.sib;
+ out_rawdata(data, bytes, p - bytes);
+
+ /*
+ * Make sure the address gets the right offset in case
+ * the line breaks in the .lst file (BR 1197827)
+ */
+
+ if (ea_data.bytes) {
+ /* use compressed displacement, if available */
+ if (ea_data.disp8) {
+ out_rawbyte(data, ea_data.disp8);
+ } else if (ea_data.rip) {
+ out_reladdr(data, opy, ea_data.bytes);
+ } else {
+ int asize = ins->addr_size >> 3;
+
+ if (overflow_general(opy->offset, asize) ||
+ signed_bits(opy->offset, ins->addr_size) !=
+ signed_bits(opy->offset, ea_data.bytes << 3))
+ warn_overflow(ea_data.bytes);
+
+ out_imm(data, opy, ea_data.bytes,
+ (asize > ea_data.bytes)
+ ? OUT_SIGNED : OUT_WRAP);
+ }
+ }
+ }
+ break;
+
+ default:
+ nasm_panic("internal instruction table corrupt"
+ ": instruction code \\%o (0x%02X) given", c, c);
+ break;
+ }
+ }
+}
+
+static opflags_t regflag(const operand * o)
+{
+ if (!is_register(o->basereg))
+ nasm_panic("invalid operand passed to regflag()");
+ return nasm_reg_flags[o->basereg];
+}
+
+static int32_t regval(const operand * o)
+{
+ if (!is_register(o->basereg))
+ nasm_panic("invalid operand passed to regval()");
+ return nasm_regvals[o->basereg];
+}
+
+static int op_rexflags(const operand * o, int mask)
+{
+ opflags_t flags;
+ int val;
+
+ if (!is_register(o->basereg))
+ nasm_panic("invalid operand passed to op_rexflags()");
+
+ flags = nasm_reg_flags[o->basereg];
+ val = nasm_regvals[o->basereg];
+
+ return rexflags(val, flags, mask);
+}
+
+static int rexflags(int val, opflags_t flags, int mask)
+{
+ int rex = 0;
+
+ if (val >= 0 && (val & 8))
+ rex |= REX_B|REX_X|REX_R;
+ if (flags & BITS64)
+ rex |= REX_W;
+ if (!(REG_HIGH & ~flags)) /* AH, CH, DH, BH */
+ rex |= REX_H;
+ else if (!(REG8 & ~flags) && val >= 4) /* SPL, BPL, SIL, DIL */
+ rex |= REX_P;
+
+ return rex & mask;
+}
+
+static int evexflags(int val, decoflags_t deco,
+ int mask, uint8_t byte)
+{
+ int evex = 0;
+
+ switch (byte) {
+ case 0:
+ if (val >= 0 && (val & 16))
+ evex |= (EVEX_P0RP | EVEX_P0X);
+ break;
+ case 2:
+ if (val >= 0 && (val & 16))
+ evex |= EVEX_P2VP;
+ if (deco & Z)
+ evex |= EVEX_P2Z;
+ if (deco & OPMASK_MASK)
+ evex |= deco & EVEX_P2AAA;
+ break;
+ }
+ return evex & mask;
+}
+
+static int op_evexflags(const operand * o, int mask, uint8_t byte)
+{
+ int val;
+
+ val = nasm_regvals[o->basereg];
+
+ return evexflags(val, o->decoflags, mask, byte);
+}
+
+static enum match_result find_match(const struct itemplate **tempp,
+ insn *instruction,
+ int32_t segment, int64_t offset, int bits)
+{
+ const struct itemplate *temp;
+ enum match_result m, merr;
+ opflags_t xsizeflags[MAX_OPERANDS];
+ bool opsizemissing = false;
+ int8_t broadcast = instruction->evex_brerop;
+ int i;
+
+ /* broadcasting uses a different data element size */
+ for (i = 0; i < instruction->operands; i++) {
+ if (i == broadcast)
+ xsizeflags[i] = instruction->oprs[i].decoflags & BRSIZE_MASK;
+ else
+ xsizeflags[i] = instruction->oprs[i].type & SIZE_MASK;
+ }
+
+ merr = MERR_INVALOP;
+
+ for (temp = nasm_instructions[instruction->opcode];
+ temp->opcode != I_none; temp++) {
+ m = matches(temp, instruction, bits);
+ if (m == MOK_JUMP) {
+ if (jmp_match(segment, offset, bits, instruction, temp))
+ m = MOK_GOOD;
+ else
+ m = MERR_INVALOP;
+ } else if (m == MERR_OPSIZEMISSING && !itemp_has(temp, IF_SX)) {
+ /*
+ * Missing operand size and a candidate for fuzzy matching...
+ */
+ for (i = 0; i < temp->operands; i++)
+ if (i == broadcast)
+ xsizeflags[i] |= temp->deco[i] & BRSIZE_MASK;
+ else
+ xsizeflags[i] |= temp->opd[i] & SIZE_MASK;
+ opsizemissing = true;
+ }
+ if (m > merr)
+ merr = m;
+ if (merr == MOK_GOOD)
+ goto done;
+ }
+
+ /* No match, but see if we can get a fuzzy operand size match... */
+ if (!opsizemissing)
+ goto done;
+
+ for (i = 0; i < instruction->operands; i++) {
+ /*
+ * We ignore extrinsic operand sizes on registers, so we should
+ * never try to fuzzy-match on them. This also resolves the case
+ * when we have e.g. "xmmrm128" in two different positions.
+ */
+ if (is_class(REGISTER, instruction->oprs[i].type))
+ continue;
+
+ /* This tests if xsizeflags[i] has more than one bit set */
+ if ((xsizeflags[i] & (xsizeflags[i]-1)))
+ goto done; /* No luck */
+
+ if (i == broadcast) {
+ instruction->oprs[i].decoflags |= xsizeflags[i];
+ instruction->oprs[i].type |= brsize_to_size(xsizeflags[i]);
+ } else {
+ instruction->oprs[i].type |= xsizeflags[i]; /* Set the size */
+ }
+ }
+
+ /* Try matching again... */
+ for (temp = nasm_instructions[instruction->opcode];
+ temp->opcode != I_none; temp++) {
+ m = matches(temp, instruction, bits);
+ if (m == MOK_JUMP) {
+ if (jmp_match(segment, offset, bits, instruction, temp))
+ m = MOK_GOOD;
+ else
+ m = MERR_INVALOP;
+ }
+ if (m > merr)
+ merr = m;
+ if (merr == MOK_GOOD)
+ goto done;
+ }
+
+done:
+ *tempp = temp;
+ return merr;
+}
+
+static uint8_t get_broadcast_num(opflags_t opflags, opflags_t brsize)
+{
+ unsigned int opsize = (opflags & SIZE_MASK) >> SIZE_SHIFT;
+ uint8_t brcast_num;
+
+ if (brsize > BITS64)
+ nasm_fatal("size of broadcasting element is greater than 64 bits");
+
+ /*
+ * The shift term is to take care of the extra BITS80 inserted
+ * between BITS64 and BITS128.
+ */
+ brcast_num = ((opsize / (BITS64 >> SIZE_SHIFT)) * (BITS64 / brsize))
+ >> (opsize > (BITS64 >> SIZE_SHIFT));
+
+ return brcast_num;
+}
+
+static enum match_result matches(const struct itemplate *itemp,
+ insn *instruction, int bits)
+{
+ opflags_t size[MAX_OPERANDS], asize;
+ bool opsizemissing = false;
+ int i, oprs;
+
+ /*
+ * Check the opcode
+ */
+ if (itemp->opcode != instruction->opcode)
+ return MERR_INVALOP;
+
+ /*
+ * Count the operands
+ */
+ if (itemp->operands != instruction->operands)
+ return MERR_INVALOP;
+
+ /*
+ * Is it legal?
+ */
+ if (!(optimizing.level > 0) && itemp_has(itemp, IF_OPT))
+ return MERR_INVALOP;
+
+ /*
+ * {rex/vexn/evex} available?
+ */
+ switch (instruction->prefixes[PPS_REX]) {
+ case P_EVEX:
+ if (!itemp_has(itemp, IF_EVEX))
+ return MERR_ENCMISMATCH;
+ break;
+ case P_VEX:
+ case P_VEX3:
+ case P_VEX2:
+ if (!itemp_has(itemp, IF_VEX))
+ return MERR_ENCMISMATCH;
+ break;
+ case P_REX:
+ if (itemp_has(itemp, IF_VEX) || itemp_has(itemp, IF_EVEX) ||
+ bits != 64)
+ return MERR_ENCMISMATCH;
+ break;
+ default:
+ if (itemp_has(itemp, IF_EVEX)) {
+ if (!iflag_test(&cpu, IF_EVEX))
+ return MERR_ENCMISMATCH;
+ } else if (itemp_has(itemp, IF_VEX)) {
+ if (!iflag_test(&cpu, IF_VEX)) {
+ return MERR_ENCMISMATCH;
+ } else if (itemp_has(itemp, IF_LATEVEX)) {
+ if (!iflag_test(&cpu, IF_LATEVEX) && iflag_test(&cpu, IF_EVEX))
+ return MERR_ENCMISMATCH;
+ }
+ }
+ break;
+ }
+
+ /*
+ * Check that no spurious colons or TOs are present
+ */
+ for (i = 0; i < itemp->operands; i++)
+ if (instruction->oprs[i].type & ~itemp->opd[i] & (COLON | TO))
+ return MERR_INVALOP;
+
+ /*
+ * Process size flags
+ */
+ switch (itemp_smask(itemp)) {
+ case IF_GENBIT(IF_SB):
+ asize = BITS8;
+ break;
+ case IF_GENBIT(IF_SW):
+ asize = BITS16;
+ break;
+ case IF_GENBIT(IF_SD):
+ asize = BITS32;
+ break;
+ case IF_GENBIT(IF_SQ):
+ asize = BITS64;
+ break;
+ case IF_GENBIT(IF_SO):
+ asize = BITS128;
+ break;
+ case IF_GENBIT(IF_SY):
+ asize = BITS256;
+ break;
+ case IF_GENBIT(IF_SZ):
+ asize = BITS512;
+ break;
+ case IF_GENBIT(IF_ANYSIZE):
+ asize = SIZE_MASK;
+ break;
+ case IF_GENBIT(IF_SIZE):
+ switch (bits) {
+ case 16:
+ asize = BITS16;
+ break;
+ case 32:
+ asize = BITS32;
+ break;
+ case 64:
+ asize = BITS64;
+ break;
+ default:
+ asize = 0;
+ break;
+ }
+ break;
+ default:
+ asize = 0;
+ break;
+ }
+
+ if (itemp_armask(itemp)) {
+ /* S- flags only apply to a specific operand */
+ i = itemp_arg(itemp);
+ memset(size, 0, sizeof size);
+ size[i] = asize;
+ } else {
+ /* S- flags apply to all operands */
+ for (i = 0; i < MAX_OPERANDS; i++)
+ size[i] = asize;
+ }
+
+ /*
+ * Check that the operand flags all match up,
+ * it's a bit tricky so lets be verbose:
+ *
+ * 1) Find out the size of operand. If instruction
+ * doesn't have one specified -- we're trying to
+ * guess it either from template (IF_S* flag) or
+ * from code bits.
+ *
+ * 2) If template operand do not match the instruction OR
+ * template has an operand size specified AND this size differ
+ * from which instruction has (perhaps we got it from code bits)
+ * we are:
+ * a) Check that only size of instruction and operand is differ
+ * other characteristics do match
+ * b) Perhaps it's a register specified in instruction so
+ * for such a case we just mark that operand as "size
+ * missing" and this will turn on fuzzy operand size
+ * logic facility (handled by a caller)
+ */
+ for (i = 0; i < itemp->operands; i++) {
+ opflags_t type = instruction->oprs[i].type;
+ decoflags_t deco = instruction->oprs[i].decoflags;
+ decoflags_t ideco = itemp->deco[i];
+ bool is_broadcast = deco & BRDCAST_MASK;
+ uint8_t brcast_num = 0;
+ opflags_t template_opsize, insn_opsize;
+
+ if (!(type & SIZE_MASK))
+ type |= size[i];
+
+ insn_opsize = type & SIZE_MASK;
+ if (!is_broadcast) {
+ template_opsize = itemp->opd[i] & SIZE_MASK;
+ } else {
+ decoflags_t deco_brsize = ideco & BRSIZE_MASK;
+
+ if (~ideco & BRDCAST_MASK)
+ return MERR_BRNOTHERE;
+
+ /*
+ * when broadcasting, the element size depends on
+ * the instruction type. decorator flag should match.
+ */
+ if (deco_brsize) {
+ template_opsize = brsize_to_size(deco_brsize);
+ /* calculate the proper number : {1to<brcast_num>} */
+ brcast_num = get_broadcast_num(itemp->opd[i], template_opsize);
+ } else {
+ template_opsize = 0;
+ }
+ }
+
+ if (~ideco & deco & OPMASK_MASK)
+ return MERR_MASKNOTHERE;
+
+ if (~ideco & deco & (Z_MASK|STATICRND_MASK|SAE_MASK))
+ return MERR_DECONOTHERE;
+
+ if (itemp->opd[i] & ~type & ~(SIZE_MASK|REGSET_MASK))
+ return MERR_INVALOP;
+
+ if (~itemp->opd[i] & type & REGSET_MASK)
+ return (itemp->opd[i] & REGSET_MASK)
+ ? MERR_REGSETSIZE : MERR_REGSET;
+
+ if (template_opsize) {
+ if (template_opsize != insn_opsize) {
+ if (insn_opsize) {
+ return MERR_INVALOP;
+ } else if (!is_class(REGISTER, type)) {
+ /*
+ * Note: we don't honor extrinsic operand sizes for registers,
+ * so "missing operand size" for a register should be
+ * considered a wildcard match rather than an error.
+ */
+ opsizemissing = true;
+ } else if (is_class(REG_HIGH, type) &&
+ instruction->prefixes[PPS_REX]) {
+ return MERR_ENCMISMATCH;
+ }
+ } else if (is_broadcast &&
+ (brcast_num !=
+ (2U << ((deco & BRNUM_MASK) >> BRNUM_SHIFT)))) {
+ /*
+ * broadcasting opsize matches but the number of repeated memory
+ * element does not match.
+ * if 64b double precision float is broadcasted to ymm (256b),
+ * broadcasting decorator must be {1to4}.
+ */
+ return MERR_BRNUMMISMATCH;
+ }
+ }
+ }
+
+ if (opsizemissing)
+ return MERR_OPSIZEMISSING;
+
+ /*
+ * Check operand sizes
+ */
+ if (itemp_has(itemp, IF_SM) || itemp_has(itemp, IF_SM2)) {
+ oprs = (itemp_has(itemp, IF_SM2) ? 2 : itemp->operands);
+ for (i = 0; i < oprs; i++) {
+ asize = itemp->opd[i] & SIZE_MASK;
+ if (asize) {
+ for (i = 0; i < oprs; i++)
+ size[i] = asize;
+ break;
+ }
+ }
+ } else {
+ oprs = itemp->operands;
+ }
+
+ for (i = 0; i < itemp->operands; i++) {
+ if (!(itemp->opd[i] & SIZE_MASK) &&
+ (instruction->oprs[i].type & SIZE_MASK & ~size[i]))
+ return MERR_OPSIZEMISMATCH;
+ }
+
+ /*
+ * Check template is okay at the set cpu level
+ */
+ if (iflag_cmp_cpu_level(&insns_flags[itemp->iflag_idx], &cpu) > 0)
+ return MERR_BADCPU;
+
+ /*
+ * Verify the appropriate long mode flag.
+ */
+ if (itemp_has(itemp, (bits == 64 ? IF_NOLONG : IF_LONG)))
+ return MERR_BADMODE;
+
+ /*
+ * If we have a HLE prefix, look for the NOHLE flag
+ */
+ if (itemp_has(itemp, IF_NOHLE) &&
+ (has_prefix(instruction, PPS_REP, P_XACQUIRE) ||
+ has_prefix(instruction, PPS_REP, P_XRELEASE)))
+ return MERR_BADHLE;
+
+ /*
+ * Check if special handling needed for Jumps
+ */
+ if ((itemp->code[0] & ~1) == 0370)
+ return MOK_JUMP;
+
+ /*
+ * Check if BND prefix is allowed.
+ * Other 0xF2 (REPNE/REPNZ) prefix is prohibited.
+ */
+ if (!itemp_has(itemp, IF_BND) &&
+ (has_prefix(instruction, PPS_REP, P_BND) ||
+ has_prefix(instruction, PPS_REP, P_NOBND)))
+ return MERR_BADBND;
+ else if (itemp_has(itemp, IF_BND) &&
+ (has_prefix(instruction, PPS_REP, P_REPNE) ||
+ has_prefix(instruction, PPS_REP, P_REPNZ)))
+ return MERR_BADREPNE;
+
+ return MOK_GOOD;
+}
+
+/*
+ * Check if ModR/M.mod should/can be 01.
+ * - EAF_BYTEOFFS is set
+ * - offset can fit in a byte when EVEX is not used
+ * - offset can be compressed when EVEX is used
+ */
+#define IS_MOD_01() (!(input->eaflags & EAF_WORDOFFS) && \
+ (ins->rex & REX_EV ? seg == NO_SEG && !forw_ref && \
+ is_disp8n(input, ins, &output->disp8) : \
+ input->eaflags & EAF_BYTEOFFS || (o >= -128 && \
+ o <= 127 && seg == NO_SEG && !forw_ref)))
+
+static int process_ea(operand *input, ea *output, int bits,
+ int rfield, opflags_t rflags, insn *ins,
+ enum ea_type expected, const char **errmsgp)
+{
+ bool forw_ref = !!(input->opflags & OPFLAG_UNKNOWN);
+ const int addrbits = ins->addr_size;
+ const int eaflags = input->eaflags;
+ const char *errmsg = NULL;
+
+ errmsg = NULL;
+
+ output->type = EA_SCALAR;
+ output->rip = false;
+ output->disp8 = 0;
+
+ /* REX flags for the rfield operand */
+ output->rex |= rexflags(rfield, rflags, REX_R | REX_P | REX_W | REX_H);
+ /* EVEX.R' flag for the REG operand */
+ ins->evex_p[0] |= evexflags(rfield, 0, EVEX_P0RP, 0);
+
+ if (is_class(REGISTER, input->type)) {
+ /*
+ * It's a direct register.
+ */
+ if (!is_register(input->basereg))
+ goto err;
+
+ if (!is_reg_class(REG_EA, input->basereg))
+ goto err;
+
+ /* broadcasting is not available with a direct register operand. */
+ if (input->decoflags & BRDCAST_MASK) {
+ errmsg = "broadcast not allowed with register operand";
+ goto err;
+ }
+
+ output->rex |= op_rexflags(input, REX_B | REX_P | REX_W | REX_H);
+ ins->evex_p[0] |= op_evexflags(input, EVEX_P0X, 0);
+ output->sib_present = false; /* no SIB necessary */
+ output->bytes = 0; /* no offset necessary either */
+ output->modrm = GEN_MODRM(3, rfield, nasm_regvals[input->basereg]);
+ } else {
+ /*
+ * It's a memory reference.
+ */
+
+ /* Embedded rounding or SAE is not available with a mem ref operand. */
+ if (input->decoflags & (ER | SAE)) {
+ errmsg = "embedded rounding is available only with "
+ "register-register operations";
+ goto err;
+ }
+
+ if (input->basereg == -1 &&
+ (input->indexreg == -1 || input->scale == 0)) {
+ /*
+ * It's a pure offset. If it is an IMMEDIATE, it is a pattern
+ * in insns.dat which allows an immediate to be used as a memory
+ * address, in which case apply the default REL/ABS.
+ */
+ if (bits == 64) {
+ if (is_class(IMMEDIATE, input->type)) {
+ if (!(input->eaflags & EAF_ABS) &&
+ ((input->eaflags & EAF_REL) || globalrel))
+ input->type |= IP_REL;
+ }
+ if ((input->type & IP_REL) == IP_REL) {
+ /*!
+ *!ea-absolute [on] absolute address cannot be RIP-relative
+ *! warns that an address that is inherently absolute cannot
+ *! be generated with RIP-relative encoding using \c{REL},
+ *! see \k{REL & ABS}.
+ */
+ if (input->segment == NO_SEG ||
+ (input->opflags & OPFLAG_RELATIVE)) {
+ nasm_warn(WARN_EA_ABSOLUTE|ERR_PASS2,
+ "absolute address can not be RIP-relative");
+ input->type &= ~IP_REL;
+ input->type |= MEMORY;
+ }
+ }
+ }
+
+ if (bits == 64 && !(IP_REL & ~input->type) && (eaflags & EAF_SIB)) {
+ errmsg = "instruction requires SIB encoding, cannot be RIP-relative";
+ goto err;
+ }
+
+ if (eaflags & EAF_BYTEOFFS ||
+ (eaflags & EAF_WORDOFFS &&
+ input->disp_size != (addrbits != 16 ? 32 : 16))) {
+ /*!
+ *!ea-dispsize [on] displacement size ignored on absolute address
+ *! warns that NASM does not support generating displacements for
+ *! inherently absolute addresses that do not match the address size
+ *! of the instruction.
+ */
+ nasm_warn(WARN_EA_DISPSIZE, "displacement size ignored on absolute address");
+ }
+
+ if ((eaflags & EAF_SIB) || (bits == 64 && (~input->type & IP_REL))) {
+ output->sib_present = true;
+ output->sib = GEN_SIB(0, 4, 5);
+ output->bytes = 4;
+ output->modrm = GEN_MODRM(0, rfield, 4);
+ output->rip = false;
+ } else {
+ output->sib_present = false;
+ output->bytes = (addrbits != 16 ? 4 : 2);
+ output->modrm = GEN_MODRM(0, rfield,
+ (addrbits != 16 ? 5 : 6));
+ output->rip = bits == 64;
+ }
+ } else {
+ /*
+ * It's an indirection.
+ */
+ int i = input->indexreg, b = input->basereg, s = input->scale;
+ int32_t seg = input->segment;
+ int hb = input->hintbase, ht = input->hinttype;
+ int t, it, bt; /* register numbers */
+ opflags_t x, ix, bx; /* register flags */
+
+ if (s == 0)
+ i = -1; /* make this easy, at least */
+
+ if (is_register(i)) {
+ it = nasm_regvals[i];
+ ix = nasm_reg_flags[i];
+ } else {
+ it = -1;
+ ix = 0;
+ }
+
+ if (is_register(b)) {
+ bt = nasm_regvals[b];
+ bx = nasm_reg_flags[b];
+ } else {
+ bt = -1;
+ bx = 0;
+ }
+
+ /* if either one are a vector register... */
+ if ((ix|bx) & (XMMREG|YMMREG|ZMMREG) & ~REG_EA) {
+ opflags_t sok = BITS32 | BITS64;
+ int32_t o = input->offset;
+ int mod, scale, index, base;
+
+ /*
+ * For a vector SIB, one has to be a vector and the other,
+ * if present, a GPR. The vector must be the index operand.
+ */
+ if (it == -1 || (bx & (XMMREG|YMMREG|ZMMREG) & ~REG_EA)) {
+ if (s == 0)
+ s = 1;
+ else if (s != 1)
+ goto err;
+
+ t = bt, bt = it, it = t;
+ x = bx, bx = ix, ix = x;
+ }
+
+ if (bt != -1) {
+ if (REG_GPR & ~bx)
+ goto err;
+ if (!(REG64 & ~bx) || !(REG32 & ~bx))
+ sok &= bx;
+ else
+ goto err;
+ }
+
+ /*
+ * While we're here, ensure the user didn't specify
+ * WORD or QWORD
+ */
+ if (input->disp_size == 16 || input->disp_size == 64)
+ goto err;
+
+ if (addrbits == 16 ||
+ (addrbits == 32 && !(sok & BITS32)) ||
+ (addrbits == 64 && !(sok & BITS64)))
+ goto err;
+
+ output->type = ((ix & ZMMREG & ~REG_EA) ? EA_ZMMVSIB
+ : ((ix & YMMREG & ~REG_EA)
+ ? EA_YMMVSIB : EA_XMMVSIB));
+
+ output->rex |= rexflags(it, ix, REX_X);
+ output->rex |= rexflags(bt, bx, REX_B);
+ ins->evex_p[2] |= evexflags(it, 0, EVEX_P2VP, 2);
+
+ index = it & 7; /* it is known to be != -1 */
+
+ switch (s) {
+ case 1:
+ scale = 0;
+ break;
+ case 2:
+ scale = 1;
+ break;
+ case 4:
+ scale = 2;
+ break;
+ case 8:
+ scale = 3;
+ break;
+ default: /* then what the smeg is it? */
+ goto err; /* panic */
+ }
+
+ if (bt == -1) {
+ base = 5;
+ mod = 0;
+ } else {
+ base = (bt & 7);
+ if (base != REG_NUM_EBP && o == 0 &&
+ seg == NO_SEG && !forw_ref &&
+ !(eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
+ mod = 0;
+ else if (IS_MOD_01())
+ mod = 1;
+ else
+ mod = 2;
+ }
+
+ output->sib_present = true;
+ output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
+ output->modrm = GEN_MODRM(mod, rfield, 4);
+ output->sib = GEN_SIB(scale, index, base);
+ } else if ((ix|bx) & (BITS32|BITS64)) {
+ /*
+ * it must be a 32/64-bit memory reference. Firstly we have
+ * to check that all registers involved are type E/Rxx.
+ */
+ opflags_t sok = BITS32 | BITS64;
+ int32_t o = input->offset;
+
+ if (it != -1) {
+ if (!(REG64 & ~ix) || !(REG32 & ~ix))
+ sok &= ix;
+ else
+ goto err;
+ }
+
+ if (bt != -1) {
+ if (REG_GPR & ~bx)
+ goto err; /* Invalid register */
+ if (~sok & bx & SIZE_MASK)
+ goto err; /* Invalid size */
+ sok &= bx;
+ }
+
+ /*
+ * While we're here, ensure the user didn't specify
+ * WORD or QWORD
+ */
+ if (input->disp_size == 16 || input->disp_size == 64)
+ goto err;
+
+ if (addrbits == 16 ||
+ (addrbits == 32 && !(sok & BITS32)) ||
+ (addrbits == 64 && !(sok & BITS64)))
+ goto err;
+
+ /* now reorganize base/index */
+ if (s == 1 && bt != it && bt != -1 && it != -1 &&
+ ((hb == b && ht == EAH_NOTBASE) ||
+ (hb == i && ht == EAH_MAKEBASE))) {
+ /* swap if hints say so */
+ t = bt, bt = it, it = t;
+ x = bx, bx = ix, ix = x;
+ }
+
+ if (bt == -1 && s == 1 && !(hb == i && ht == EAH_NOTBASE)) {
+ /* make single reg base, unless hint */
+ bt = it, bx = ix, it = -1, ix = 0;
+ }
+ if (eaflags & EAF_MIB) {
+ /* MIB/split-SIB encoding */
+ if (it == -1 && (hb == b && ht == EAH_NOTBASE)) {
+ /*
+ * make a single reg index [reg*1].
+ * gas uses this form for an explicit index register.
+ */
+ it = bt, ix = bx, bt = -1, bx = 0, s = 1;
+ }
+ if ((ht == EAH_SUMMED) && bt == -1) {
+ /* separate once summed index into [base, index] */
+ bt = it, bx = ix, s--;
+ }
+ } else {
+ if (((s == 2 && it != REG_NUM_ESP &&
+ (!(eaflags & EAF_TIMESTWO) || (ht == EAH_SUMMED))) ||
+ s == 3 || s == 5 || s == 9) && bt == -1) {
+ /* convert 3*EAX to EAX+2*EAX */
+ bt = it, bx = ix, s--;
+ }
+ if (it == -1 && (bt & 7) != REG_NUM_ESP &&
+ (eaflags & EAF_TIMESTWO) &&
+ (hb == b && ht == EAH_NOTBASE)) {
+ /*
+ * convert [NOSPLIT EAX*1]
+ * to sib format with 0x0 displacement - [EAX*1+0].
+ */
+ it = bt, ix = bx, bt = -1, bx = 0, s = 1;
+ }
+ }
+ if (s == 1 && it == REG_NUM_ESP) {
+ /* swap ESP into base if scale is 1 */
+ t = it, it = bt, bt = t;
+ x = ix, ix = bx, bx = x;
+ }
+ if (it == REG_NUM_ESP ||
+ (s != 1 && s != 2 && s != 4 && s != 8 && it != -1))
+ goto err; /* wrong, for various reasons */
+
+ output->rex |= rexflags(it, ix, REX_X);
+ output->rex |= rexflags(bt, bx, REX_B);
+
+ if (it == -1 && (bt & 7) != REG_NUM_ESP && !(eaflags & EAF_SIB)) {
+ /* no SIB needed */
+ int mod, rm;
+
+ if (bt == -1) {
+ rm = 5;
+ mod = 0;
+ } else {
+ rm = (bt & 7);
+ if (rm != REG_NUM_EBP && o == 0 &&
+ seg == NO_SEG && !forw_ref &&
+ !(eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
+ mod = 0;
+ else if (IS_MOD_01())
+ mod = 1;
+ else
+ mod = 2;
+ }
+
+ output->sib_present = false;
+ output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
+ output->modrm = GEN_MODRM(mod, rfield, rm);
+ } else {
+ /* we need a SIB */
+ int mod, scale, index, base;
+
+ if (it == -1)
+ index = 4, s = 1;
+ else
+ index = (it & 7);
+
+ switch (s) {
+ case 1:
+ scale = 0;
+ break;
+ case 2:
+ scale = 1;
+ break;
+ case 4:
+ scale = 2;
+ break;
+ case 8:
+ scale = 3;
+ break;
+ default: /* then what the smeg is it? */
+ goto err; /* panic */
+ }
+
+ if (bt == -1) {
+ base = 5;
+ mod = 0;
+ } else {
+ base = (bt & 7);
+ if (base != REG_NUM_EBP && o == 0 &&
+ seg == NO_SEG && !forw_ref &&
+ !(eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
+ mod = 0;
+ else if (IS_MOD_01())
+ mod = 1;
+ else
+ mod = 2;
+ }
+
+ output->sib_present = true;
+ output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
+ output->modrm = GEN_MODRM(mod, rfield, 4);
+ output->sib = GEN_SIB(scale, index, base);
+ }
+ } else { /* it's 16-bit */
+ int mod, rm;
+ int16_t o = input->offset;
+
+ /* check for 64-bit long mode */
+ if (addrbits == 64)
+ goto err;
+
+ /* check all registers are BX, BP, SI or DI */
+ if ((b != -1 && b != R_BP && b != R_BX && b != R_SI && b != R_DI) ||
+ (i != -1 && i != R_BP && i != R_BX && i != R_SI && i != R_DI))
+ goto err;
+
+ /* ensure the user didn't specify DWORD/QWORD */
+ if (input->disp_size == 32 || input->disp_size == 64)
+ goto err;
+
+ if (s != 1 && i != -1)
+ goto err; /* no can do, in 16-bit EA */
+ if (b == -1 && i != -1) {
+ int tmp = b;
+ b = i;
+ i = tmp;
+ } /* swap */
+ if ((b == R_SI || b == R_DI) && i != -1) {
+ int tmp = b;
+ b = i;
+ i = tmp;
+ }
+ /* have BX/BP as base, SI/DI index */
+ if (b == i)
+ goto err; /* shouldn't ever happen, in theory */
+ if (i != -1 && b != -1 &&
+ (i == R_BP || i == R_BX || b == R_SI || b == R_DI))
+ goto err; /* invalid combinations */
+ if (b == -1) /* pure offset: handled above */
+ goto err; /* so if it gets to here, panic! */
+
+ rm = -1;
+ if (i != -1)
+ switch (i * 256 + b) {
+ case R_SI * 256 + R_BX:
+ rm = 0;
+ break;
+ case R_DI * 256 + R_BX:
+ rm = 1;
+ break;
+ case R_SI * 256 + R_BP:
+ rm = 2;
+ break;
+ case R_DI * 256 + R_BP:
+ rm = 3;
+ break;
+ } else
+ switch (b) {
+ case R_SI:
+ rm = 4;
+ break;
+ case R_DI:
+ rm = 5;
+ break;
+ case R_BP:
+ rm = 6;
+ break;
+ case R_BX:
+ rm = 7;
+ break;
+ }
+ if (rm == -1) /* can't happen, in theory */
+ goto err; /* so panic if it does */
+
+ if (o == 0 && seg == NO_SEG && !forw_ref && rm != 6 &&
+ !(eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
+ mod = 0;
+ else if (IS_MOD_01())
+ mod = 1;
+ else
+ mod = 2;
+
+ output->sib_present = false; /* no SIB - it's 16-bit */
+ output->bytes = mod; /* bytes of offset needed */
+ output->modrm = GEN_MODRM(mod, rfield, rm);
+ }
+
+ if (eaflags & EAF_REL) {
+ /* Explicit REL reference with indirect memory */
+ nasm_warn(WARN_OTHER,
+ "indirect address displacements cannot be RIP-relative");
+ }
+ }
+ }
+
+ output->size = 1 + output->sib_present + output->bytes;
+ /*
+ * The type parsed might not match one supplied by
+ * a caller. In this case exit with error and let
+ * the caller to decide how critical it is.
+ */
+ if (output->type != expected)
+ goto err_set_msg;
+
+ return 0;
+
+err_set_msg:
+ if (!errmsg) {
+ /* Default error message */
+ static char invalid_address_msg[40];
+ snprintf(invalid_address_msg, sizeof invalid_address_msg,
+ "invalid %d-bit effective address", bits);
+ errmsg = invalid_address_msg;
+ }
+ *errmsgp = errmsg;
+ return -1;
+
+err:
+ output->type = EA_INVALID;
+ goto err_set_msg;
+}
+
+static void add_asp(insn *ins, int addrbits)
+{
+ int j, valid;
+ int defdisp;
+
+ valid = (addrbits == 64) ? 64|32 : 32|16;
+
+ switch (ins->prefixes[PPS_ASIZE]) {
+ case P_A16:
+ valid &= 16;
+ break;
+ case P_A32:
+ valid &= 32;
+ break;
+ case P_A64:
+ valid &= 64;
+ break;
+ case P_ASP:
+ valid &= (addrbits == 32) ? 16 : 32;
+ break;
+ default:
+ break;
+ }
+
+ for (j = 0; j < ins->operands; j++) {
+ if (is_class(MEMORY, ins->oprs[j].type)) {
+ opflags_t i, b;
+
+ /* Verify as Register */
+ if (!is_register(ins->oprs[j].indexreg))
+ i = 0;
+ else
+ i = nasm_reg_flags[ins->oprs[j].indexreg];
+
+ /* Verify as Register */
+ if (!is_register(ins->oprs[j].basereg))
+ b = 0;
+ else
+ b = nasm_reg_flags[ins->oprs[j].basereg];
+
+ if (ins->oprs[j].scale == 0)
+ i = 0;
+
+ if (!i && !b) {
+ int ds = ins->oprs[j].disp_size;
+ if ((addrbits != 64 && ds > 8) ||
+ (addrbits == 64 && ds == 16))
+ valid &= ds;
+ } else {
+ if (!(REG16 & ~b))
+ valid &= 16;
+ if (!(REG32 & ~b))
+ valid &= 32;
+ if (!(REG64 & ~b))
+ valid &= 64;
+
+ if (!(REG16 & ~i))
+ valid &= 16;
+ if (!(REG32 & ~i))
+ valid &= 32;
+ if (!(REG64 & ~i))
+ valid &= 64;
+ }
+ }
+ }
+
+ if (valid & addrbits) {
+ ins->addr_size = addrbits;
+ } else if (valid & ((addrbits == 32) ? 16 : 32)) {
+ /* Add an address size prefix */
+ ins->prefixes[PPS_ASIZE] = (addrbits == 32) ? P_A16 : P_A32;;
+ ins->addr_size = (addrbits == 32) ? 16 : 32;
+ } else {
+ /* Impossible... */
+ nasm_nonfatal("impossible combination of address sizes");
+ ins->addr_size = addrbits; /* Error recovery */
+ }
+
+ defdisp = ins->addr_size == 16 ? 16 : 32;
+
+ for (j = 0; j < ins->operands; j++) {
+ if (!(MEM_OFFS & ~ins->oprs[j].type) &&
+ (ins->oprs[j].disp_size ? ins->oprs[j].disp_size : defdisp) != ins->addr_size) {
+ /*
+ * mem_offs sizes must match the address size; if not,
+ * strip the MEM_OFFS bit and match only EA instructions
+ */
+ ins->oprs[j].type &= ~(MEM_OFFS & ~MEMORY);
+ }
+ }
+}