/// @file #include "jets/k.h" #include "jets/q.h" #include "jets/w.h" #include "noun.h" /* Get the lowest `n` bits of a word `w` using a bitmask. */ #define TAKEBITS(n,w) \ ((n)==32) ? (w) : \ ((n)==0) ? 0 : \ ((w) & ((1 << (n)) - 1)) /* Divide, rounding up. */ #define DIVCEIL(x,y) \ (x==0) ? 0 : \ 1 + ((x - 1) / y); /* `ripn` breaks `atom` into a list of blocks, of bit-width `bits`. The resulting list will be least-significant block first. XX TODO This only handles cases where the bit-width is <= 32. For each block we produce, we need to grab the relevant words inside `atom`, so we first compute their indicies. `ins_idx` is the word-index of the least-significant word we care about, and `sig_idx` is the word after that. Next we grab those words (`ins_word` and `sig_word`) from the atom using `u3r_word`. Note that `sig_idx` might be out-of-bounds for the underlying array of `atom`, but `u3r_word` returns 0 in that case, which is exatly what we want. Now, we need to grab the relevant bits out of both words, and combine them. `bits_rem_in_ins_word` is the number of remaining (insignificant) bits in `ins_word`, `nbits_ins` is the number of bits we want from the less-significant word, and `nbits_sig` from the more-significant one. Take the least significant `nbits_sig` bits from `sig_word`, and take the slice we care about from `ins_word`. In order to take that slice, we drop `bits_rem_in_ins_word` insignificant bits, and then take the `nbits_sig` most-significant bits. Last, we slice out those bits from the two words, combine them into one word, and cons them onto the front of the result. */ static u3_noun _bit_rip(u3_atom bits, u3_atom atom) { if ( !_(u3a_is_cat(bits) || bits==0 || bits>31) ) { return u3m_bail(c3__fail); } c3_w bit_width = u3r_met(0, atom); c3_w num_blocks = DIVCEIL(bit_width, bits); u3_noun res = u3_nul; for ( c3_w blk = 0; blk < num_blocks; blk++ ) { c3_w next_blk = blk + 1; c3_w blks_rem = num_blocks - next_blk; c3_w bits_rem = blks_rem * bits; c3_w ins_idx = bits_rem / 32; c3_w sig_idx = ins_idx + 1; c3_w bits_rem_in_ins_word = bits_rem % 32; c3_w ins_word = u3r_word(ins_idx, atom); c3_w sig_word = u3r_word(sig_idx, atom); c3_w nbits_ins = c3_min(bits, 32 - bits_rem_in_ins_word); c3_w nbits_sig = bits - nbits_ins; c3_w ins_word_bits = TAKEBITS(nbits_ins, ins_word >> bits_rem_in_ins_word); c3_w sig_word_bits = TAKEBITS(nbits_sig, sig_word); c3_w item = ins_word_bits | (sig_word_bits << nbits_ins); res = u3nc(item, res); } return res; } static u3_noun _block_rip(u3_atom bloq, u3_atom b) { if ( !_(u3a_is_cat(bloq)) || (bloq >= 32) ) { return u3m_bail(c3__fail); } c3_g bloq_g = bloq; /* This is a fast-path for the case where all the resulting blocks will fit in 31-bit direct atoms. */ if ( bloq_g < 5 ) { // produce direct atoms u3_noun acc = u3_nul; c3_w met_w = u3r_met(bloq_g, b); // num blocks in atom c3_w nbits_w = 1 << bloq_g; // block size in bits c3_w bmask_w = (1 << nbits_w) - 1; // result mask for ( c3_w i_w = 0; i_w < met_w; i_w++ ) { // `i_w` is block index c3_w nex_w = i_w + 1; // next block c3_w pat_w = met_w - nex_w; // blks left after this c3_w bit_w = pat_w << bloq_g; // bits left after this c3_w wor_w = bit_w >> 5; // wrds left after this c3_w sif_w = bit_w & 31; // bits left in word c3_w src_w = u3r_word(wor_w, b); // find word by index c3_w rip_w = (src_w >> sif_w) & bmask_w; // get item from word acc = u3nc(rip_w, acc); } return acc; } u3_noun acc = u3_nul; c3_w met_w = u3r_met(bloq_g, b); c3_w len_w = u3r_met(5, b); c3_g san_g = (bloq_g - 5); c3_w san_w = 1 << san_g; c3_w dif_w = (met_w << san_g) - len_w; c3_w tub_w = ((dif_w == 0) ? san_w : (san_w - dif_w)); for ( c3_w i_w = 0; i_w < met_w; i_w++ ) { c3_w pat_w = (met_w - (i_w + 1)); c3_w wut_w = (pat_w << san_g); c3_w sap_w = ((0 == i_w) ? tub_w : san_w); c3_w j_w; u3_atom rip; u3i_slab sab_u; u3i_slab_bare(&sab_u, 5, sap_w); for ( j_w = 0; j_w < sap_w; j_w++ ) { sab_u.buf_w[j_w] = u3r_word(wut_w + j_w, b); } rip = u3i_slab_mint(&sab_u); acc = u3nc(rip, acc); len_w -= san_w; } return acc; } u3_noun u3qc_rip(u3_atom a, u3_atom b, u3_atom c) { if ( 1 == b ) { return _block_rip(a, c); } if ( 0 == a ) { return _bit_rip(b, c); } u3l_log("rip: stub"); return u3_none; } u3_noun u3wc_rip(u3_noun cor) { u3_atom bloq, step; u3_noun a, b; u3x_mean(cor, u3x_sam_2, &a, u3x_sam_3, &b, 0); u3x_bite(a, &bloq, &step); return u3qc_rip(bloq, step, u3x_atom(b)); } u3_noun u3kc_rip(u3_atom a, u3_atom b, u3_atom c) { u3_noun pro = u3qc_rip(a, b, c); u3z(a); u3z(b); u3z(c); return pro; }