1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
|
(** Noun type and basic operations *)
(** A noun is either an atom (arbitrary-precision integer) or a cell (pair of nouns) *)
type noun =
| Atom of Z.t (** Arbitrary-precision integer using Zarith *)
| Cell of noun * noun (** Pair of nouns *)
(** Exception raised on nock evaluation errors *)
exception Exit
(** Create an atom from an int *)
let atom n = Atom (Z.of_int n)
(** Create a cell *)
let cell a b = Cell (a, b)
(** Test if a noun is a cell *)
let is_cell = function
| Cell _ -> true
| Atom _ -> false
(** Test if a noun is an atom *)
let is_atom = function
| Atom _ -> true
| Cell _ -> false
(** Get head of a cell *)
let head = function
| Cell (h, _) -> h
| Atom _ -> raise Exit
(** Get tail of a cell *)
let tail = function
| Cell (_, t) -> t
| Atom _ -> raise Exit
(** Fragment/axis lookup: slot(n, noun)
This implements the tree-addressing scheme:
- 1 is the root
- 2 is head, 3 is tail
- For n > 1: if even, go left; if odd, go right
*)
let slot_debug = ref false
let rec slot n noun =
let debug = !slot_debug && (Z.equal n (Z.of_int 2) || Z.equal n (Z.of_int 3)) in
if debug then
Printf.eprintf "[SLOT-DEBUG] slot(%s, noun)\n%!" (Z.to_string n);
if Z.equal n Z.one then begin
if debug then Printf.eprintf "[SLOT-DEBUG] slot(%s) = identity\n%!" (Z.to_string n);
noun
end
else if Z.equal n Z.zero then
raise Exit
else begin
let bit = Z.testbit n 0 in (* Check if odd *)
let parent = Z.shift_right n 1 in
if debug then
Printf.eprintf "[SLOT-DEBUG] slot(%s): bit=%b parent=%s\n%!"
(Z.to_string n) bit (Z.to_string parent);
let sub = slot parent noun in
let result = if bit then tail sub else head sub in
if debug then begin
Printf.eprintf "[SLOT-DEBUG] slot(%s): taking %s, result is %s\n%!"
(Z.to_string n) (if bit then "tail" else "head")
(if is_cell result then
let h = head result in
if is_atom h then
(match h with Atom z -> "cell[" ^ Z.to_string z ^ " ...]" | _ -> "cell[? ...]")
else "cell[cell ...]"
else "atom")
end;
result
end
(** Equality test for nouns *)
let rec equal a b =
match a, b with
| Atom x, Atom y -> Z.equal x y
| Cell (ah, at), Cell (bh, bt) -> equal ah bh && equal at bt
| _, _ -> false
(** Increment an atom *)
let inc = function
| Atom n -> Atom (Z.succ n)
| Cell _ -> raise Exit
(** Compute mug (31-bit hash) of a noun
This implements Urbit's mug hash function using FNV-1a.
The mug is cached in the C implementation but we compute it fresh each time.
For atoms: hash the bytes of the integer representation
For cells: mix the mugs of head and tail
*)
let rec mug noun =
(* FNV-1a constants - using hex to avoid signed int32 overflow *)
let fnv_prime = 16777619l in
let fnv_basis = 0x811c9dc5l in (* 2166136261 in decimal *)
(* Mask to 31 bits (Urbit uses 31-bit mugs) *)
let mask31 x = Int32.logand x 0x7fffffffl in
(* Hash bytes using FNV-1a *)
let hash_bytes bytes =
let len = Bytes.length bytes in
let rec loop i hash =
if i >= len then hash
else
let byte = Int32.of_int (Bytes.get_uint8 bytes i) in
let hash' = Int32.mul (Int32.logxor hash byte) fnv_prime in
loop (i + 1) hash'
in
mask31 (loop 0 fnv_basis)
in
(* Mix two mugs together (for cells) *)
let mix_mugs a_mug b_mug =
(* Mix by XOR and multiply, then mask *)
let mixed = Int32.mul (Int32.logxor a_mug b_mug) fnv_prime in
mask31 mixed
in
match noun with
| Atom z ->
(* Convert atom to bytes and hash *)
let bytes = Z.to_bits z in
hash_bytes (Bytes.of_string bytes)
| Cell (h, t) ->
(* Mix the mugs of head and tail *)
let h_mug = mug h in
let t_mug = mug t in
mix_mugs h_mug t_mug
(** Pretty-print a noun *)
let rec pp_noun fmt = function
| Atom n -> Format.fprintf fmt "%s" (Z.to_string n)
| Cell (a, b) -> Format.fprintf fmt "[%a %a]" pp_noun a pp_noun b
|