!. => %a50 ~% %a.50 ~ ~ |% :: Types :: +$ ship @p +$ life @ud +$ rift @ud +$ pass @ +$ bloq @ +$ step _`@u`1 +$ bite $@(bloq [=bloq =step]) +$ octs [p=@ud q=@] +$ mold $~(* $-(* *)) ++ unit |$ [item] $@(~ [~ u=item]) ++ list |$ [item] $@(~ [i=item t=(list item)]) ++ lest |$ [item] [i=item t=(list item)] ++ tree |$ [node] $@(~ [n=node l=(tree node) r=(tree node)]) ++ pair |$ [head tail] [p=head q=tail] ++ map |$ [key value] $| (tree (pair key value)) |=(a=(tree (pair)) ?:(=(~ a) & ~(apt by a))) :: ++ set |$ [item] $| (tree item) |=(a=(tree) ?:(=(~ a) & ~(apt in a))) :: ++ jug |$ [key value] (map key (set value)) :: :: Bits :: ++ dec :: decrement ~/ %dec |= a=@ ~_ leaf+"decrement-underflow" ?< =(0 a) =+ b=0 |- ^- @ ?: =(a +(b)) b $(b +(b)) :: ++ add :: plus ~/ %add |= [a=@ b=@] ^- @ ?: =(0 a) b $(a (dec a), b +(b)) :: ++ sub :: subtract ~/ %sub |= [a=@ b=@] ~_ leaf+"subtract-underflow" :: difference ^- @ ?: =(0 b) a $(a (dec a), b (dec b)) :: ++ mul :: multiply ~/ %mul |: [a=`@`1 b=`@`1] ^- @ =+ c=0 |- ?: =(0 a) c $(a (dec a), c (add b c)) :: ++ div :: divide ~/ %div |: [a=`@`1 b=`@`1] ^- @ ~_ leaf+"divide-by-zero" ?< =(0 b) =+ c=0 |- ?: (lth a b) c $(a (sub a b), c +(c)) :: ++ dvr :: divide w/remainder ~/ %dvr |: [a=`@`1 b=`@`1] ^- [p=@ q=@] [(div a b) (mod a b)] :: ++ mod :: modulus ~/ %mod |: [a=`@`1 b=`@`1] ^- @ ?< =(0 b) (sub a (mul b (div a b))) :: ++ bex :: binary exponent ~/ %bex |= a=bloq ^- @ ?: =(0 a) 1 (mul 2 $(a (dec a))) :: ++ lsh :: left-shift ~/ %lsh |= [a=bite b=@] =/ [=bloq =step] ?^(a a [a *step]) (mul b (bex (mul (bex bloq) step))) :: ++ rsh :: right-shift ~/ %rsh |= [a=bite b=@] =/ [=bloq =step] ?^(a a [a *step]) (div b (bex (mul (bex bloq) step))) :: ++ con :: binary or ~/ %con |= [a=@ b=@] =+ [c=0 d=0] |- ^- @ ?: ?&(=(0 a) =(0 b)) d %= $ a (rsh 0 a) b (rsh 0 b) c +(c) d %+ add d %+ lsh [0 c] ?& =(0 (end 0 a)) =(0 (end 0 b)) == == :: ++ dis :: binary and ~/ %dis |= [a=@ b=@] =| [c=@ d=@] |- ^- @ ?: ?|(=(0 a) =(0 b)) d %= $ a (rsh 0 a) b (rsh 0 b) c +(c) d %+ add d %+ lsh [0 c] ?| =(0 (end 0 a)) =(0 (end 0 b)) == == :: ++ mix :: binary xor ~/ %mix |= [a=@ b=@] ^- @ =+ [c=0 d=0] |- ?: ?&(=(0 a) =(0 b)) d %= $ a (rsh 0 a) b (rsh 0 b) c +(c) d (add d (lsh [0 c] =((end 0 a) (end 0 b)))) == :: ++ lth :: less ~/ %lth |= [a=@ b=@] ^- ? ?& !=(a b) |- ?| =(0 a) ?& !=(0 b) $(a (dec a), b (dec b)) == == == :: ++ lte :: less or equal ~/ %lte |= [a=@ b=@] |(=(a b) (lth a b)) :: ++ gte :: greater or equal ~/ %gte |= [a=@ b=@] ^- ? !(lth a b) :: ++ gth :: greater ~/ %gth |= [a=@ b=@] ^- ? !(lte a b) :: ++ swp :: naive rev bloq order ~/ %swp |= [a=bloq b=@] (rep a (flop (rip a b))) :: ++ met :: measure ~/ %met |= [a=bloq b=@] ^- @ =+ c=0 |- ?: =(0 b) c $(b (rsh a b), c +(c)) :: ++ end :: tail ~/ %end |= [a=bite b=@] =/ [=bloq =step] ?^(a a [a *step]) (mod b (bex (mul (bex bloq) step))) :: ++ cat :: concatenate ~/ %cat |= [a=bloq b=@ c=@] (add (lsh [a (met a b)] c) b) :: ++ cut :: slice ~/ %cut |= [a=bloq [b=step c=step] d=@] (end [a c] (rsh [a b] d)) :: ++ can :: assemble ~/ %can |= [a=bloq b=(list [p=step q=@])] ^- @ ?~ b 0 (add (end [a p.i.b] q.i.b) (lsh [a p.i.b] $(b t.b))) :: ++ cad :: assemble specific ~/ %cad |= [a=bloq b=(list [p=step q=@])] ^- [=step @] :_ (can a b) |- ?~ b 0 (add p.i.b $(b t.b)) :: ++ rep :: assemble fixed ~/ %rep |= [a=bite b=(list @)] =/ [=bloq =step] ?^(a a [a *step]) =| i=@ud |- ^- @ ?~ b 0 %+ add $(i +(i), b t.b) (lsh [bloq (mul step i)] (end [bloq step] i.b)) :: ++ rip :: disassemble ~/ %rip |= [a=bite b=@] ^- (list @) ?: =(0 b) ~ [(end a b) $(b (rsh a b))] :: :: :: Lists :: ++ lent :: length ~/ %lent |= a=(list) ^- @ =+ b=0 |- ?~ a b $(a t.a, b +(b)) :: ++ slag :: suffix ~/ %slag |* [a=@ b=(list)] |- ^+ b ?: =(0 a) b ?~ b ~ $(b t.b, a (dec a)) :: ++ snag :: index ~/ %snag |* [a=@ b=(list)] |- ^+ ?>(?=(^ b) i.b) ?~ b ~_ leaf+"snag-fail" !! ?: =(0 a) i.b $(b t.b, a (dec a)) :: ++ homo :: homogenize |* a=(list) ^+ =< $ |@ ++ $ ?:(*? ~ [i=(snag 0 a) t=$]) -- a :: ++ flop :: reverse ~/ %flop |* a=(list) => .(a (homo a)) ^+ a =+ b=`_a`~ |- ?~ a b $(a t.a, b [i.a b]) :: ++ welp :: concatenate ~/ %welp =| [* *] |@ ++ $ ?~ +<- +<-(. +<+) +<-(+ $(+<- +<->)) -- :: ++ reap :: replicate ~/ %reap |* [a=@ b=*] |- ^- (list _b) ?~ a ~ [b $(a (dec a))] :: :: Modular arithmetic :: ++ fe :: modulo bloq |_ a=bloq ++ rol |= [b=bloq c=@ d=@] ^- @ :: roll left =+ e=(sit d) =+ f=(bex (sub a b)) =+ g=(mod c f) (sit (con (lsh [b g] e) (rsh [b (sub f g)] e))) ++ sum |=([b=@ c=@] (sit (add b c))) :: wrapping add ++ sit |=(b=@ (end a b)) :: enforce modulo -- :: :: Hashes :: ++ muk :: standard murmur3 ~% %muk ..muk ~ =+ ~(. fe 5) |= [syd=@ len=@ key=@] =. syd (end 5 syd) =/ pad (sub len (met 3 key)) =/ data (welp (rip 3 key) (reap pad 0)) =/ nblocks (div len 4) :: intentionally off-by-one =/ h1 syd =+ [c1=0xcc9e.2d51 c2=0x1b87.3593] =/ blocks (rip 5 key) =/ i nblocks =. h1 =/ hi h1 |- ?: =(0 i) hi =/ k1 (snag (sub nblocks i) blocks) :: negative array index =. k1 (sit (mul k1 c1)) =. k1 (rol 0 15 k1) =. k1 (sit (mul k1 c2)) =. hi (mix hi k1) =. hi (rol 0 13 hi) =. hi (sum (sit (mul hi 5)) 0xe654.6b64) $(i (dec i)) =/ tail (slag (mul 4 nblocks) data) =/ k1 0 =/ tlen (dis len 3) =. h1 ?+ tlen h1 :: fallthrough switch %3 =. k1 (mix k1 (lsh [0 16] (snag 2 tail))) =. k1 (mix k1 (lsh [0 8] (snag 1 tail))) =. k1 (mix k1 (snag 0 tail)) =. k1 (sit (mul k1 c1)) =. k1 (rol 0 15 k1) =. k1 (sit (mul k1 c2)) (mix h1 k1) %2 =. k1 (mix k1 (lsh [0 8] (snag 1 tail))) =. k1 (mix k1 (snag 0 tail)) =. k1 (sit (mul k1 c1)) =. k1 (rol 0 15 k1) =. k1 (sit (mul k1 c2)) (mix h1 k1) %1 =. k1 (mix k1 (snag 0 tail)) =. k1 (sit (mul k1 c1)) =. k1 (rol 0 15 k1) =. k1 (sit (mul k1 c2)) (mix h1 k1) == =. h1 (mix h1 len) |^ (fmix32 h1) ++ fmix32 |= h=@ =. h (mix h (rsh [0 16] h)) =. h (sit (mul h 0x85eb.ca6b)) =. h (mix h (rsh [0 13] h)) =. h (sit (mul h 0xc2b2.ae35)) =. h (mix h (rsh [0 16] h)) h -- :: ++ mug :: mug with murmur3 ~/ %mug |= a=* |^ ?@ a (mum 0xcafe.babe 0x7fff a) =/ b (cat 5 $(a -.a) $(a +.a)) (mum 0xdead.beef 0xfffe b) :: ++ mum |= [syd=@uxF fal=@F key=@] =/ wyd (met 3 key) =| i=@ud |- ^- @F ?: =(8 i) fal =/ haz=@F (muk syd wyd key) =/ ham=@F (mix (rsh [0 31] haz) (end [0 31] haz)) ?.(=(0 ham) ham $(i +(i), syd +(syd))) -- :: ++ gor :: mug order ~/ %gor |= [a=* b=*] ^- ? =+ [c=(mug a) d=(mug b)] ?: =(c d) (dor a b) (lth c d) :: ++ mor :: more mug order ~/ %mor |= [a=* b=*] ^- ? =+ [c=(mug (mug a)) d=(mug (mug b))] ?: =(c d) (dor a b) (lth c d) :: ++ dor :: tree order ~/ %dor |= [a=* b=*] ^- ? ?: =(a b) & ?. ?=(@ a) ?: ?=(@ b) | ?: =(-.a -.b) $(a +.a, b +.b) $(a -.a, b -.b) ?. ?=(@ b) & (lth a b) :: ++ por :: parent order ~/ %por |= [a=@p b=@p] ^- ? ?: =(a b) & =| i=@ |- ?: =(i 2) :: second two bytes (lte a b) :: first two bytes =+ [c=(end 3 a) d=(end 3 b)] ?: =(c d) $(a (rsh 3 a), b (rsh 3 b), i +(i)) (lth c d) :: :: Maps :: ++ by ~/ %by =| a=(tree (pair)) :: (map) =* node ?>(?=(^ a) n.a) |@ ++ get ~/ %get |* b=* => .(b `_?>(?=(^ a) p.n.a)`b) |- ^- (unit _?>(?=(^ a) q.n.a)) ?~ a ~ ?: =(b p.n.a) `q.n.a ?: (gor b p.n.a) $(a l.a) $(a r.a) :: ++ put ~/ %put |* [b=* c=*] |- ^+ a ?~ a [[b c] ~ ~] ?: =(b p.n.a) ?: =(c q.n.a) a a(n [b c]) ?: (gor b p.n.a) =+ d=$(a l.a) ?> ?=(^ d) ?: (mor p.n.a p.n.d) a(l d) d(r a(l r.d)) =+ d=$(a r.a) ?> ?=(^ d) ?: (mor p.n.a p.n.d) a(r d) d(l a(r l.d)) :: ++ del ~/ %del |* b=* |- ^+ a ?~ a ~ ?. =(b p.n.a) ?: (gor b p.n.a) a(l $(a l.a)) a(r $(a r.a)) |- ^- [$?(~ _a)] ?~ l.a r.a ?~ r.a l.a ?: (mor p.n.l.a p.n.r.a) l.a(r $(l.a r.l.a)) r.a(l $(r.a l.r.a)) :: ++ apt =< $ ~/ %apt =| [l=(unit) r=(unit)] |. ^- ? ?~ a & ?& ?~(l & &((gor p.n.a u.l) !=(p.n.a u.l))) ?~(r & &((gor u.r p.n.a) !=(u.r p.n.a))) ?~ l.a & &((mor p.n.a p.n.l.a) !=(p.n.a p.n.l.a) $(a l.a, l `p.n.a)) ?~ r.a & &((mor p.n.a p.n.r.a) !=(p.n.a p.n.r.a) $(a r.a, r `p.n.a)) == -- :: ++ on :: ordered map ~/ %on |* [key=mold val=mold] => |% +$ item [key=key val=val] -- :: ~% %comp +>+ ~ |= compare=$-([key key] ?) ~% %core + ~ |% :: ++ apt ~/ %apt |= a=(tree item) =| [l=(unit key) r=(unit key)] |- ^- ? ?~ a %.y ?& ?~(l %.y (compare key.n.a u.l)) ?~(r %.y (compare u.r key.n.a)) ?~(l.a %.y &((mor key.n.a key.n.l.a) $(a l.a, l `key.n.a))) ?~(r.a %.y &((mor key.n.a key.n.r.a) $(a r.a, r `key.n.a))) == :: ++ get ~/ %get |= [a=(tree item) b=key] ^- (unit val) ?~ a ~ ?: =(b key.n.a) `val.n.a ?: (compare b key.n.a) $(a l.a) $(a r.a) :: ++ has ~/ %has |= [a=(tree item) b=key] ^- ? !=(~ (get a b)) :: ++ put ~/ %put |= [a=(tree item) =key =val] ^- (tree item) ?~ a [n=[key val] l=~ r=~] ?: =(key.n.a key) a(val.n val) ?: (compare key key.n.a) =/ l $(a l.a) ?> ?=(^ l) ?: (mor key.n.a key.n.l) a(l l) l(r a(l r.l)) =/ r $(a r.a) ?> ?=(^ r) ?: (mor key.n.a key.n.r) a(r r) r(l a(r l.r)) -- :: :: Sets :: ++ in ~/ %in =| a=(tree) :: (set) |@ ++ put ~/ %put |* b=* |- ^+ a ?~ a [b ~ ~] ?: =(b n.a) a ?: (gor b n.a) =+ c=$(a l.a) ?> ?=(^ c) ?: (mor n.a n.c) a(l c) c(r a(l r.c)) =+ c=$(a r.a) ?> ?=(^ c) ?: (mor n.a n.c) a(r c) c(l a(r l.c)) :: ++ del ~/ %del |* b=* |- ^+ a ?~ a ~ ?. =(b n.a) ?: (gor b n.a) a(l $(a l.a)) a(r $(a r.a)) |- ^- [$?(~ _a)] ?~ l.a r.a ?~ r.a l.a ?: (mor n.l.a n.r.a) l.a(r $(l.a r.l.a)) r.a(l $(r.a l.r.a)) :: ++ apt =< $ ~/ %apt =| [l=(unit) r=(unit)] |. ^- ? ?~ a & ?& ?~(l & (gor n.a u.l)) ?~(r & (gor u.r n.a)) ?~(l.a & ?&((mor n.a n.l.a) $(a l.a, l `n.a))) ?~(r.a & ?&((mor n.a n.r.a) $(a r.a, r `n.a))) == -- :: :: Jugs :: ++ ju =| a=(tree (pair * (tree))) :: (jug) |@ ++ get |* b=* =+ c=(~(get by a) b) ?~(c ~ u.c) :: ++ del |* [b=* c=*] ^+ a =+ d=(get b) =+ e=(~(del in d) c) ?~ e (~(del by a) b) (~(put by a) b e) :: ++ put |* [b=* c=*] ^+ a =+ d=(get b) (~(put by a) b (~(put in d) c)) -- --