1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
import sqlite3
from numpy import ndarray
from sqlite_vec import serialize_float32
def get_db():
db = sqlite3.connect("./rag.db")
db.execute("PRAGMA journal_mode=WAL;")
db.execute("PRAGMA synchronous=NORMAL;")
db.execute("PRAGMA temp_store=MEMORY;")
db.execute("PRAGMA mmap_size=300000000;") # 30GB if your OS allows
db.enable_load_extension(True)
sqlite_vec.load(db)
db.enable_load_extension(False)
return db
def init_schema(db: sqlite3.Connection, DIM:int):
db.execute(f"CREATE VIRTUAL TABLE IF NOT EXISTS vec USING vec0(embedding float[{DIM}])")
db.execute('''
CREATE TABLE IF NOT EXISTS chunks (
id INTEGER PRIMARY KEY,
text TEXT
)''')
db.execute("CREATE VIRTUAL TABLE IF NOT EXISTS fts USING fts5(text)")
db.commit()
def store_chunks(db: sqlite3.Connection, chunks: list[str], V_np:ndarray):
assert len(chunks) == len(V_np)
db.execute("BEGIN")
db.executemany('''
INSERT INTO chunks(id, text) VALUES (?, ?)
''', list(enumerate(chunks, start=1)))
db.executemany(
"INSERT INTO vec(rowid, embedding) VALUES (?, ?)",
[(i+1, memoryview(V_np[i].tobytes())) for i in range(len(chunks))]
)
db.executemany("INSERT INTO fts(rowid, text) VALUES (?, ?)", list(enumerate(chunks, start=1)))
db.commit()
def vec_topk(db, q_vec_f32, k=10):
rows = db.execute(
"SELECT rowid, distance FROM vec WHERE embedding MATCH ? ORDER BY distance LIMIT ?",
(serialize_float32(q_vec_f32), k)
).fetchall()
return rows # [(rowid, distance)]
def bm25_topk(db, qtext, k=10):
return [rid for (rid,) in db.execute(
"SELECT rowid FROM fts WHERE fts MATCH ? LIMIT ?", (qtext, k)
).fetchall()]
def wipe_db():
db = sqlite3.connect("./rag.db")
db.executescript("DROP TABLE IF EXISTS chunks; DROP TABLE IF EXISTS fts; DROP TABLE IF EXISTS vec;")
db.close()
|