summaryrefslogtreecommitdiff
path: root/rag/main.py
blob: 221adfafad25c8006df7cf6ba65a119ed5e0c75f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import sys
import argparse
from pathlib import Path
from rag.ingest import start_ingest
from rag.search import search_hybrid, vec_search
from rag.db import get_db
# your Docling chunker imports…

def main():
    ap = argparse.ArgumentParser(prog="rag")
    sub = ap.add_subparsers(dest="cmd", required=True)

    # ingest
    ap_ing = sub.add_parser("ingest", help="Parse, chunk, embed, and index a file into a collection")
    ap_ing.add_argument("--file", required=True, help="Path to PDF/TXT to ingest")
    ap_ing.set_defaults(func=cmd_ingest)

    # query
    ap_q = sub.add_parser("query", help="Query a collection")
    ap_q.add_argument("--query", required=True, help="User query text")
    ap_q.add_argument("--simple", action="store_true", help="Vector-only search (skip reranker)")
    ap_q.add_argument("--mmr", action="store_true", help="Apply MMR after CE")
    ap_q.add_argument("--mmr-lambda", type=float, default=0.7)
    ap_q.add_argument("--k-vec", type=int, default=50)
    ap_q.add_argument("--k-bm25", type=int, default=50)
    ap_q.add_argument("--k-ce", type=int, default=30)
    ap_q.add_argument("--k-final", type=int, default=10)
    ap_q.set_defaults(func=cmd_query)

    args = ap.parse_args()
    args.func(args)


if __name__ == "__main__":
    main()




def cmd_ingest(args):
    path = Path(args.file)

    if not path.exists():
        print(f"File not found: {path}", file=sys.stderr)
        sys.exit(1)


    db = get_db()
    stats = start_ingest(db,path)
    print(f"Ingested file={args.file} :: {stats}")

def cmd_query(args):

    db = get_db()
    if args.simple:
        results = vec_search(db,  args.query, k=args.k_final)
    else:
        results = search_hybrid(
            db, args.query,
            k_vec=args.k_vec,
            k_bm25=args.k_bm25,
            k_ce=args.k_ce,
            k_final=args.k_final,
            use_mmr=args.mmr,
            mmr_lambda=args.mmr_lambda,
        )

    for rid, txt, score in results:
        print(f"[{rid:05d}] score={score:.3f}\n{txt[:400]}...\n")

    db.close()