1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
# rag/rerank.py
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from sentence_transformers import CrossEncoder
from rag.constants import BATCH, RERANKER_ID
# device: "cuda" | "cpu" | "mps"
def get_rerank_model():
id = "BAAI/bge-reranker-base" # or -large if you’ve got VRAM
return CrossEncoder(
id,
device="cuda",
max_length=384,
model_kwargs={
# "attn_implementation":"flash_attention_2",
"device_map":"auto",
"dtype":torch.float16
},
tokenizer_kwargs={"padding_side": "left"}
)
def rerank_cross_encoder(reranker: CrossEncoder, query: str, candidates: list[tuple[int, str]], batch_size: int = BATCH):
"""
candidates: [(id, text), ...]
returns: [(id, text, score)] sorted desc by score
"""
if not candidates:
return []
ids, texts = zip(*candidates)
# pairs = [(query, t) for t in texts]
pairs = [(query, t[:1000]) for t in texts]
scores = reranker.predict(pairs, batch_size=batch_size) # np.ndarray [N], higher=better
ranked = sorted(zip(ids, texts, scores), key=lambda x: x[2], reverse=True)
return ranked
# tok = AutoTokenizer.from_pretrained(RERANKER_ID, use_fast=True, model_max_length=384)
# ce = AutoModelForSequenceClassification.from_pretrained(
# RERANKER_ID, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2",
# device_map="auto" # or load_in_8bit=True
# )
# def ce_scores(query, texts, batch_size=16, max_length=384):
# scores = []
# for i in range(0, len(texts), batch_size):
# batch = texts[i:i+batch_size]
# enc = tok([ (query, t[:1000]) for t in batch ],
# padding=True, truncation=True, max_length=max_length,
# return_tensors="pt").to(ce.device)
# with torch.inference_mode():
# logits = ce(**enc).logits.squeeze(-1) # [B]
# scores.extend(logits.float().cpu().tolist())
# return scores
|