1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
//
"use client";
import React, {
type ReactNode,
useState,
useCallback,
useMemo,
useEffect,
startTransition,
useTransition,
} from "react";
import { Brain, Zap } from "lucide-react";
import { NLP } from "sortug-ai";
import GranularityMenu, { GranularityId } from "./LevelPicker";
import TextViewer from "./TextViewer";
import { wordAction } from "@/actions/lang";
import Modal from "@/components/Modal";
import { Spinner } from "@/components/ui/spinner";
// --- Granularity Definition ---
type AnalysisEngine = "spacy" | "stanza";
// --- Main Application Component ---
export default function NlpTextAnalysisScreen({
children,
}: {
children: ReactNode;
}) {
const [modalContent, setModalContent] = useState<ReactNode | null>(null);
const closeModal = () => setModalContent(null);
const [selectedGranularity, setSelectedGranularity] =
useState<GranularityId>("word");
const [currentEngine, setCurrentEngine] = useState<AnalysisEngine>("spacy");
const [selectedElementInfo, setSelectedElementInfo] = useState<string | null>(
null,
);
const [activeNlpData, setData] = useState<NLP.Spacy.SpacyRes>();
useEffect(() => {
const nlpdata = sessionStorage.getItem(
currentEngine === "spacy" ? "spacyres" : "stanzares",
);
const parsed = JSON.parse(nlpdata!);
setData(parsed);
}, []);
const handleGranularityChange = useCallback((granularity: GranularityId) => {
setSelectedGranularity(granularity);
setSelectedElementInfo(null);
}, []);
const [isPending, startTransition] = useTransition();
const handleElementSelect = useCallback(
(elementType: GranularityId, elementData: any, elementText: string) => {
if (elementType === "word") {
startTransition(async () => {
const modal = await wordAction(elementData.lemma, "en");
setModalContent(modal);
});
}
},
[currentEngine],
);
// const handleElementSelect = useCallback(
// (elementType: GranularityId, elementData: any, elementText: string) => {
// let info = `Selected: ${elementType.toUpperCase()} (${currentEngine})\n`;
// info += `Text: "${elementText}"\n`;
// if (elementType === "syllable" || elementType === "phoneme") {
// info += `(Granularity: ${elementType}, showing parent Word/Token details)\n`;
// }
// // Add specific details based on element type and engine
// if (elementType === "word") {
// if (currentEngine === "stanza" && elementData.lemma) {
// // StanzaWord
// info += `Lemma: ${elementData.lemma}\nUPOS: ${elementData.upos}\nXPOS: ${elementData.xpos}\nDepRel: ${elementData.deprel} (Head ID: ${elementData.head})\n`;
// if (elementData.parentToken?.ner)
// info += `NER (Token): ${elementData.parentToken.ner}\n`;
// } else if (currentEngine === "spacy" && elementData.lemma_) {
// // SpacyToken
// info += `Lemma: ${elementData.lemma_}\nPOS: ${elementData.pos_}\nTag: ${elementData.tag_}\nDep: ${elementData.dep_} (Head ID: ${elementData.head?.i})\n`;
// if (elementData.ent_type_)
// info += `Entity: ${elementData.ent_type_} (${elementData.ent_iob_})\n`;
// }
// } else if (elementType === "sentence") {
// if (
// currentEngine === "stanza" &&
// (elementData as NLP.Stanza.Sentence).sentiment
// ) {
// info += `Sentiment: ${(elementData as NLP.Stanza.Sentence).sentiment}\n`;
// }
// if (
// (elementData as NLP.Stanza.Sentence | NLP.Spacy.Sentence).entities
// ?.length
// ) {
// info += `Entities in sentence: ${(elementData.entities as any[]).map((e) => `${e.text} (${e.type || e.label_})`).join(", ")}\n`;
// }
// } else if (elementType === "paragraph") {
// info += `Char range: ${elementData.start_char}-${elementData.end_char}\n`;
// info += `Sentence count: ${elementData.sentences.length}\n`;
// }
// info += `Raw Data Keys: ${Object.keys(elementData).slice(0, 5).join(", ")}...`; // Show some keys
// setSelectedElementInfo(info);
// console.log(
// "Selected Element:",
// elementType,
// elementData,
// "Text:",
// elementText,
// );
// },
// [currentEngine],
// );
const toggleEngine = () => {
setCurrentEngine((prev) => (prev === "spacy" ? "stanza" : "spacy"));
setSelectedElementInfo(null);
};
return (
<div className="min-h-screen bg-gradient-to-br from-slate-100 to-sky-100 p-4 sm:p-8 font-sans">
<header className="mb-6 text-center">
<h1 className="text-3xl sm:text-4xl font-bold text-slate-800">
NLP Text Analyzer
</h1>
<button
onClick={toggleEngine}
className="mt-2 px-4 py-2 bg-purple-600 hover:bg-purple-700 text-white rounded-lg shadow-md transition-colors flex items-center mx-auto"
>
{currentEngine === "spacy" ? (
<Zap size={18} className="mr-2" />
) : (
<Brain size={18} className="mr-2" />
)}
Switch to {currentEngine === "spacy" ? "Stanza" : "spaCy"} View
</button>
<p className="text-sm text-slate-600 mt-1">
Currently viewing with:{" "}
<span className="font-semibold">{currentEngine.toUpperCase()}</span>
</p>
</header>
<div className="flex flex-col lg:flex-row gap-6 max-w-7xl mx-auto">
<aside className="lg:w-72 lg:sticky lg:top-8 h-full flex flex-col gap-6">
<GranularityMenu
selectedGranularity={selectedGranularity}
onSelectGranularity={handleGranularityChange}
/>
{selectedElementInfo && (
<div className="p-4 bg-white rounded-lg shadow-md text-xs text-slate-700 overflow-auto max-h-96">
<h3 className="font-semibold text-sky-600 mb-2 text-sm">
Selection Details:
</h3>
<pre className="whitespace-pre-wrap break-all">
{selectedElementInfo}
</pre>
</div>
)}
</aside>
<main className="flex-1 min-w-0">
{" "}
{/* min-w-0 for flex child to prevent overflow */}
{activeNlpData ? (
<TextViewer
nlpData={activeNlpData}
engine={currentEngine}
granularity={selectedGranularity}
onElementSelect={handleElementSelect}
/>
) : (
<Spinner />
)}
</main>
</div>
<footer className="text-center mt-12 text-sm text-slate-500">
<p>
© {new Date().getFullYear()} NLP Analysis Tool. Powered by React,
TailwindCSS, and your NLP engine of choice!
</p>
</footer>
{modalContent && (
<Modal onClose={closeModal} isOpen={!!modalContent}>
{modalContent}
</Modal>
)}
</div>
);
}
|