1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
|
//
"use client";
import React, { useState, useCallback, useMemo, useEffect } from "react";
import {
TextSelect,
Combine,
WholeWord,
Highlighter,
Atom,
Mic2,
CheckCircle2,
ExternalLink,
Brain,
Zap,
} from "lucide-react";
import { NLP } from "sortug-ai";
// --- Granularity Definition ---
const GRANULARITY_LEVELS = [
{ id: "text", name: "Text", icon: TextSelect },
{ id: "paragraph", name: "Paragraph", icon: Combine },
{ id: "sentence", name: "Sentence", icon: Highlighter },
{ id: "clause", name: "Clause (Sentence Lvl)", icon: Highlighter },
{ id: "word", name: "Word/Token", icon: WholeWord },
{ id: "syllable", name: "Syllable (Word Lvl)", icon: Mic2 },
{ id: "phoneme", name: "Phoneme (Word Lvl)", icon: Atom },
] as const;
type GranularityId = (typeof GRANULARITY_LEVELS)[number]["id"];
type AnalysisEngine = "spacy" | "stanza";
// --- Sample Data (Simplified) ---
interface Paragraph {
id: string;
text: string;
start_char: number;
end_char: number;
sentences: NLP.Spacy.Sentence[];
}
const segmentByParagraphs = (
inputText: string,
allSentences: NLP.Spacy.Sentence[],
): Paragraph[] => {
const paragraphs: Paragraph[] = [];
const paraTexts = inputText.split(/\n\n+/);
let currentDocCharOffset = 0;
let sentenceIdx = 0;
paraTexts.forEach((paraText, idx) => {
const paraStartChar = currentDocCharOffset;
const paraEndChar = paraStartChar + paraText.length;
const paraSentences: NLP.Spacy.Sentence[] = [];
while (sentenceIdx < allSentences.length) {
const sent = allSentences[sentenceIdx]!;
if (sent.start < paraEndChar) {
paraSentences.push(sent);
sentenceIdx++;
} else {
break;
}
}
paragraphs.push({
id: `para-${idx}`,
text: paraText,
start_char: paraStartChar,
end_char: paraEndChar,
sentences: paraSentences,
});
currentDocCharOffset =
paraEndChar +
(inputText.substring(paraEndChar).match(/^\n\n+/)?.[0].length || 0);
});
return paragraphs;
};
// --- Granularity Menu ---
interface GranularityMenuProps {
selectedGranularity: GranularityId;
onSelectGranularity: (granularity: GranularityId) => void;
}
const GranularityMenu: React.FC<GranularityMenuProps> = ({
selectedGranularity,
onSelectGranularity,
}) => (
<nav className="w-full bg-slate-800 text-slate-100 p-4 space-y-2 rounded-lg shadow-lg">
<h2 className="text-lg font-semibold text-sky-400 mb-4">
Granularity Level
</h2>
{GRANULARITY_LEVELS.map((level) => {
const Icon = level.icon;
const isSelected = selectedGranularity === level.id;
return (
<button
key={level.id}
onClick={() => onSelectGranularity(level.id)}
className={`w-full flex items-center space-x-3 p-3 rounded-md text-left transition-all duration-150 ease-in-out
${isSelected ? "bg-sky-500 text-white shadow-md scale-105" : "hover:bg-slate-700 hover:text-sky-300"}`}
>
<Icon
size={20}
className={`${isSelected ? "text-white" : "text-sky-400"}`}
/>
<span>{level.name}</span>
{isSelected && (
<CheckCircle2 size={18} className="ml-auto text-white" />
)}
</button>
);
})}
</nav>
);
// --- Text Viewer ---
interface TextViewerProps {
nlpData: NLP.Spacy.SpacyRes;
engine: AnalysisEngine;
granularity: GranularityId;
onElementSelect: (
elementType: GranularityId,
elementData: any,
fullText: string,
) => void;
}
const TextViewer: React.FC<TextViewerProps> = ({
nlpData,
engine,
granularity,
onElementSelect,
}) => {
const paragraphs = useMemo(
() => segmentByParagraphs(nlpData.input, nlpData.segments),
[nlpData],
);
const getElementText = (element: any, fullInput: string): string => {
if (element.text) return element.text; // Already has text
if ("start_char" in element && "end_char" in element) {
// Stanza word/token/sentence/entity
return fullInput.substring(element.start_char, element.end_char);
}
if ("start" in element && "end" in element) {
// spaCy token/sentence/entity
return fullInput.substring(element.start, element.end);
}
return "N/A";
};
const renderInteractiveSpan = (
key: string | number,
text: string,
data: any,
type: GranularityId,
baseClasses: string = "",
hoverClasses: string = "hover:bg-yellow-200",
) => (
<span
key={key}
className={`cursor-pointer transition-colors duration-150 ${baseClasses} ${hoverClasses} p-0.5 rounded`}
onClick={(e) => {
e.stopPropagation(); // Prevent clicks bubbling to parent elements
onElementSelect(type, data, getElementText(data, nlpData.input));
}}
>
{text}
</span>
);
return (
<div className="text-lg text-gray-800 leading-relaxed bg-white p-4 sm:p-6 rounded-xl shadow-inner">
{granularity === "text"
? renderInteractiveSpan(
"full-text",
nlpData.input,
nlpData,
"text",
"block",
"hover:bg-sky-100",
)
: paragraphs.map((para) => (
<div
key={para.id}
className={`mb-4 ${granularity === "paragraph" ? "p-2 rounded-md shadow-sm bg-gray-50" : ""}`}
onClick={
granularity === "paragraph"
? (e) => {
e.stopPropagation();
onElementSelect("paragraph", para, para.text);
}
: undefined
}
style={granularity === "paragraph" ? { cursor: "pointer" } : {}}
>
{para.sentences.map((sent, sentIdx) => {
const sentenceText = getElementText(sent, nlpData.input);
const sentenceKey = `sent-${para.id}-${sentIdx}`;
if (granularity === "sentence" || granularity === "clause") {
return renderInteractiveSpan(
sentenceKey,
sentenceText,
sent,
granularity,
"mr-1 inline-block bg-gray-100 shadow-xs",
"hover:bg-sky-200",
);
} else if (
granularity === "word" ||
granularity === "syllable" ||
granularity === "phoneme"
) {
let currentWordRenderIndex = 0; // to add spaces correctly
return (
<span key={sentenceKey} className="mr-1">
{" "}
{/* Sentence wrapper */}
{sent.words.map((word, idx) => {
const wordText = getElementText(word, nlpData.input);
const wordKey = `${sentenceKey}-tok-${idx}-word-${word}`;
const space = currentWordRenderIndex > 0 ? " " : "";
currentWordRenderIndex++;
return (
<React.Fragment key={wordKey}>
{space}
{renderInteractiveSpan(
wordKey,
wordText,
word,
granularity,
"bg-gray-50",
"hover:bg-yellow-300",
)}
</React.Fragment>
);
})}
</span>
);
}
// Fallback for paragraph view if no other granularity matches (should not happen if logic is correct)
return (
<span key={sentenceKey} className="mr-1">
{sentenceText}
</span>
);
})}
</div>
))}
</div>
);
};
// --- Main Application Component ---
export default function NlpTextAnalysisScreen() {
const [selectedGranularity, setSelectedGranularity] =
useState<GranularityId>("word");
const [currentEngine, setCurrentEngine] = useState<AnalysisEngine>("stanza");
const [selectedElementInfo, setSelectedElementInfo] = useState<string | null>(
null,
);
const [activeNlpData, setData] = useState<NLP.Spacy.SpacyRes>();
useEffect(() => {
// const nlpdata = sessionStorage.getItem(
// currentEngine === "spacy" ? "spacyres" : "stanzares",
// );
// const activeNlpData = JSON.parse(nlpdata!);
}, []);
const handleGranularityChange = useCallback((granularity: GranularityId) => {
setSelectedGranularity(granularity);
setSelectedElementInfo(null);
}, []);
const handleElementSelect = useCallback(
(elementType: GranularityId, elementData: any, elementText: string) => {
let info = `Selected: ${elementType.toUpperCase()} (${currentEngine})\n`;
info += `Text: "${elementText}"\n`;
if (elementType === "syllable" || elementType === "phoneme") {
info += `(Granularity: ${elementType}, showing parent Word/Token details)\n`;
}
// Add specific details based on element type and engine
if (elementType === "word") {
if (currentEngine === "stanza" && elementData.lemma) {
// StanzaWord
info += `Lemma: ${elementData.lemma}\nUPOS: ${elementData.upos}\nXPOS: ${elementData.xpos}\nDepRel: ${elementData.deprel} (Head ID: ${elementData.head})\n`;
if (elementData.parentToken?.ner)
info += `NER (Token): ${elementData.parentToken.ner}\n`;
} else if (currentEngine === "spacy" && elementData.lemma_) {
// SpacyToken
info += `Lemma: ${elementData.lemma_}\nPOS: ${elementData.pos_}\nTag: ${elementData.tag_}\nDep: ${elementData.dep_} (Head ID: ${elementData.head?.i})\n`;
if (elementData.ent_type_)
info += `Entity: ${elementData.ent_type_} (${elementData.ent_iob_})\n`;
}
} else if (elementType === "sentence") {
if (
currentEngine === "stanza" &&
(elementData as NLP.Stanza.Sentence).sentiment
) {
info += `Sentiment: ${(elementData as NLP.Stanza.Sentence).sentiment}\n`;
}
if (
(elementData as NLP.Stanza.Sentence | NLP.Spacy.Sentence).entities
?.length
) {
info += `Entities in sentence: ${(elementData.entities as any[]).map((e) => `${e.text} (${e.type || e.label_})`).join(", ")}\n`;
}
} else if (elementType === "paragraph") {
info += `Char range: ${elementData.start_char}-${elementData.end_char}\n`;
info += `Sentence count: ${elementData.sentences.length}\n`;
}
info += `Raw Data Keys: ${Object.keys(elementData).slice(0, 5).join(", ")}...`; // Show some keys
setSelectedElementInfo(info);
console.log(
"Selected Element:",
elementType,
elementData,
"Text:",
elementText,
);
},
[currentEngine],
);
const toggleEngine = () => {
setCurrentEngine((prev) => (prev === "spacy" ? "stanza" : "spacy"));
setSelectedElementInfo(null);
};
return (
<div className="min-h-screen bg-gradient-to-br from-slate-100 to-sky-100 p-4 sm:p-8 font-sans">
<header className="mb-6 text-center">
<h1 className="text-3xl sm:text-4xl font-bold text-slate-800">
NLP Text Analyzer
</h1>
<button
onClick={toggleEngine}
className="mt-2 px-4 py-2 bg-purple-600 hover:bg-purple-700 text-white rounded-lg shadow-md transition-colors flex items-center mx-auto"
>
{currentEngine === "spacy" ? (
<Zap size={18} className="mr-2" />
) : (
<Brain size={18} className="mr-2" />
)}
Switch to {currentEngine === "spacy" ? "Stanza" : "spaCy"} View
</button>
<p className="text-sm text-slate-600 mt-1">
Currently viewing with:{" "}
<span className="font-semibold">{currentEngine.toUpperCase()}</span>
</p>
</header>
<div className="flex flex-col lg:flex-row gap-6 max-w-7xl mx-auto">
<aside className="lg:w-72 lg:sticky lg:top-8 h-full flex flex-col gap-6">
<GranularityMenu
selectedGranularity={selectedGranularity}
onSelectGranularity={handleGranularityChange}
/>
{selectedElementInfo && (
<div className="p-4 bg-white rounded-lg shadow-md text-xs text-slate-700 overflow-auto max-h-96">
<h3 className="font-semibold text-sky-600 mb-2 text-sm">
Selection Details:
</h3>
<pre className="whitespace-pre-wrap break-all">
{selectedElementInfo}
</pre>
</div>
)}
</aside>
<main className="flex-1 min-w-0">
{" "}
{/* min-w-0 for flex child to prevent overflow */}
<TextViewer
nlpData={activeNlpData}
engine={currentEngine}
granularity={selectedGranularity}
onElementSelect={handleElementSelect}
/>
</main>
</div>
<footer className="text-center mt-12 text-sm text-slate-500">
<p>
© {new Date().getFullYear()} NLP Analysis Tool. Powered by React,
TailwindCSS, and your NLP engine of choice!
</p>
</footer>
</div>
);
}
|